- 成功学不能学
润物老师
成功是一个小概率事件,混得太惨也是。大部分人,还是过着不太成功不太失败的日子。如果我们要修理一辆汽车,你会只坚持用扳手,不用螺丝刀么?我们既可以用扳手,也可以用螺丝刀。关键是,目标是把车修好。要点拆解一、成功永远是小概率事件通过对炼金术的案例,以及数学中的正态分布曲线,即无论什么群体,随机变量的概率分布大多数总会停留在某一个值前后,离这个值越远,出现的概率越少。来说明,成功也是个小概率事件,混的太
- PDF和CDF
薛定谔的猫_大雪
概率论
在概率论和统计学中,PDF和CDF是两种描述随机变量分布的重要函数:ProbabilityDensityFunction(PDF):概率密度函数是用来描述连续随机变量可能取值的概率分布的函数。对于一个连续型随机变量X,其PDFf(x)定义为在某个取值x处的概率密度,即X在该值附近出现的概率密度。PDF的积分可以得到概率,即在某个区间内随机变量出现的概率。CumulativeDensityFunct
- 蒙特卡罗——排队模拟python代码实现
潮汐退涨月冷风霜
python开发语言蒙特卡罗
排队问题描述数学知识:指数分布指数分布随机变量生成的数学原理指数分布的定义指数分布是连续概率分布,常用于描述某些事件发生的时间间隔。其概率密度函数(PDF)为:f(x;λ)=λe−λxf(x;\lambda)=\lambdae^{-\lambdax}f(x;λ)=λe−λx其中,λ\lambdaλ是速率参数,λ>0\lambda>0λ>0,并且x≥0x\geq0x≥0。生成指数分布随机变量的原理要
- Matlab 简单计算PDF和CDF
奔跑着的孩子
通信概念最大似然算法
CDF(cumulativedistributionfunction)叫做累积分布函数,描述一个实数随机变量X的概率分布,是概率密度函数的积分。它的最主要作用就是观测某些数值也就是随机变量的取值在那个附近出现的概率比较大,它是一个增函数.可以有效的处理一些异常值.随机变量小于或者等于某个数值的概率P(X=b(i)&a(s)<=b(i+1)n(i)=n(i)+1;s=s+1;endendendsum
- torch.nn中的22种loss函数简述
01_6
人工智能机器学习
loss.py中能看到所有的loss函数,本文会简单对它们进行介绍1.L1Loss计算输入和目标之间的L1(即绝对值)损失。这种损失函数会计算预测值和目标值之间差的绝对值的平均。2.NLLLoss(负对数似然损失)首先找到每个样本模型预测的概率分布中对应于真实标签的那个值,然后取这个值的负数,最后对所有样本的损失取平均。即loss(x,class)=−x[class]3.NLLLoss2d(二维输
- Top-K准确率代码实现
友人Chi
python机器学习开发语言
文章目录Top-K准确率Top-K准确率的代码实现多标签分类准确率的代码实现Top-K准确率Top-K准确率就是用来计算预测结果中概率最大的前K个结果包含正确标签的占比。换句话说,平常我们所说的准确率其实就是Top-1准确率。下面我们还是通过一个例子来进行说明。假如现在有一个用于手写体识别的分类器(10分类),你现在将一张正确标签为3的图片输入到分类器中且得到了如下所示的一个概率分布:logits
- python随机数产生最全直接汇总
鹏鹏写代码
python工具篇pythonrandom
random.betavariate(alpha,beta)以beta分布的概率分布返回0~1之间的随机数返回值:介于0~1之间的随机数importrandomprint(random.betavariate(1,3))0.1443350519425653choice()~从非序列中返回一个随机元素ramdom.choice(seq)#seq表示需要随机抽取的序列返回值:从非空序列中返回一个随机元
- 理解Softmax函数的原理和实现
Ven%
深度学习基础动手自然语言处理人工智能深度学习机器学习python
Softmax函数是机器学习和深度学习中非常基础且重要的一个概念,特别是在处理分类问题时。它的作用是将一个向量中的元素值转换成概率分布,使得每个元素的值都在0到1之间,并且所有元素值的总和为1。原理Softmax函数的数学表达式定义如下:softmax(zi)=ezi∑jezj\text{softmax}(z_i)=\frac{e^{z_i}}{\sum_{j}e^{z_j}}softmax(zi
- 解惑深度学习中的困惑度Perplexity
Axlsss
深度学习统计知识深度学习人工智能数学建模
困惑度的定义困惑度(Perplexity)是衡量语言模型好坏的一个常用指标。语言模型(languagemodel)可以预测序列(比如一个句子)中每个时间步词元(比如一个句子中的逐个单词)的概率分布,继而计算一个序列的概率。一个好的语言模型应该有更高的概率生成一个好的序列,即生成的序列不应该让人感到很困惑,困惑度的核心思想是:序列生成的概率越大,其困惑度越小,因此可以使用困惑度这个指标来评估语言模型
- 高斯分布推导
章靓
概率论
GaussianDistribution基础概念:似然性:用于在已知某些观测所得到的结果时,对有关事物之性质的参数进行估值。最大似然估计:给定一个概率分布DDD,一直其概率密度函数为fDf_DfD,以及一个分布参数θ\thetaθ,我们可以从这个分布中抽出一个具有nnn个值的采样X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn,利用fDf_DfD计算出其似然函数:L(
- 深入理解LDA主题模型及其在文本分析中的应用
小高要坚强
python信息可视化matplotlib算法分类
深入理解LDA主题模型及其在文本分析中的应用在自然语言处理领域,主题模型是一种强大的工具,能够自动发现文档集中的潜在主题。在大规模文本数据分析中,LatentDirichletAllocation(LDA)是最受欢迎的主题模型之一。LDA的核心目标是从文档集中提取不同的主题,并确定每篇文档属于这些主题的概率分布。本文将详细介绍LDA主题模型的原理、如何使用Python实现LDA,并演示如何将其应用
- 深度学习如何入门?
科学的N次方
深度学习
入门深度学习需要系统性的学习和实践经验积累,以下是一份详细的入门指南,包含了关键的学习步骤和资源:预备知识:•编程基础:熟悉Python编程语言,它是深度学习领域最常用的编程语言。确保掌握变量、条件语句、循环、函数等基本概念,并学习如何使用Python处理数据和文件操作。•数学基础:理解线性代数(矩阵运算、向量空间等)、微积分(导数、梯度求解等)、概率论与统计学(期望、方差、概率分布、最大似然估计
- Echarts绘制任意数据的正态分布图
tsunami_______
Vueecharts前端javascript
一、什么是正态分布正态分布,又称高斯分布或钟形曲线,是统计学中最为重要和常用的分布之一。正态分布是一种连续型的概率分布,其概率密度函数(ProbabilityDensityFunction,简称PDF)可以通过一个平均值(μ,mu)和标准差(σ,sigma)来完全描述。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准
- ChatGPT和LLM
小米人er
我的博客chatgpt
ChatGPT和LLM(大型语言模型)之间存在密切的关系。首先,LLM是一个更为抽象的概念,它包含了各种自然语言处理任务中使用的各种深度学习模型结构。这些模型通过建立深层神经网络,根据已有的大量文本数据进行文本自动生成。其核心思想是基于训练数据中的统计规律,将输入序列转化为概率分布,进而输出目标序列。这种技术广泛应用于各种自然语言处理任务,如机器翻译、语音识别、文本生成等。而ChatGPT则是基于
- Visual Studio+C#实现信道与信息率失真函数
deleteeee
visualstudioc#信息论算法失真函数编程经验分享信道
1.要求设计一款信道与信息率失真函数计算系统,要求如下:系统能够通过输入的转移概率矩阵计算对称以及非对称离散无记忆信道的信道容量系统能够通过输入的概率分布以及失真矩阵来计算与信息率失真函数有关的相关参数,例如Dmin,R(Dmin),Dmax,R(Dmax),并且能够给出相应的转移概率矩阵系统通过多个窗体组合,通过总菜单点击不同选项会进入到相应的计算中窗体中应该包括MenuStrip控件,通过控件
- 随机过程及应用学习笔记(三)几种重要的随机过程
苦瓜汤补钙
学习笔记
介绍独立过程和独立增量过程。重点介绍两种独立增量过程-—维纳过程和泊松过程。目录前言一、独立过程和独立增量过程1、独立过程(IndependentProcess)2、独立增量过程(IndependentIncrementProcess)二、正态过程(高斯过程)1、正态过程的定义编辑2、正态过程的概率分布三、维纳过程(Brown运动)1、定义2、概率分布及数学特征3、性质四、泊松过程1、定义2、概率
- 离散型随机变量的分布列的教学
7300T
离散型随机变量的分布列在概率教学中的地位离散型随机变量的分布列是计算离散型随机变量的期望和方差的基础,同时也是表示二项分布、几何分布等重要概率分布的基础工具。因此,分布列的教学是重中之重。多种离散型随机变量的分布列借助于实例,用分布列描述各种概率分布,不但加强了分布列教学,还可以把分布列与各种概率模型联系起来。(1)由等可能事件引起的随机变量的分布列一个袋子中有六个同样大小的小球,编号为1、2、3
- Transformers中的Beam Search高效实现
zenRRan
算法python深度学习机器学习搜索引擎
来自:纸鱼AI目前Github上的大部分实现均针对于单个样本的beamsearch,而本文主要介绍了针对单个样本和批量样本的beamsearch实现。本文代码可以点击“查看原文”找到BeamSearch的原理设输入序列为,输出序列为,我们需要建模如下概率分布:(公式向右滑动)在执行解码时,我们有几种选词方案,第一种则是穷举所有可能序列,这种成本过大无法承受。如果每一步都选择概率最大的词,这种解码方
- 联合概率分布-概率质量函数归一化性质-连续型变量概率分布
云博士的AI课堂
AI中的数学概率论概率分布概率统计AI中的数学联合概率分布
更多AI技术入门知识与工具使用请看下面链接:https://student-api.iyincaishijiao.com/t/iNSVmUE8/
- 概率分布-离散型概率分布
云博士的AI课堂
AI中的数学人工智能概率论概率统计概率分布AI中的数学
更多AI技术入门知识与工具使用请看下面链接:https://student-api.iyincaishijiao.com/t/iNSVmUE8/
- matlab正态分布拟合数据画图
红老鼠
matlab
1clearclccloseall%生成风速数据wind_speed_data=randn(1000,1)*5+10;%生成均值为10,标准差为5的正态分布数据%计算概率分布直方图hist_bins=linspace(min(wind_speed_data),max(wind_speed_data),20);hist_values=hist(wind_speed_data,hist_bins)/n
- 用Excel进行数据分析:数据分析工具在哪里?
东方草堂的数据
【工具】Excel
用Excel进行数据分析:数据分析工具在哪里?Excel里面自带的数据分析功能也可以完成SAS、SPSS这些专业统计软件有的数据分析工作,这其中包括:描述性统计、相关系数、概率分布、均值推断、线性、非线性回归、多元回归分析、时间序列等内容。接下来的用Excel进行数据分析系列教程,都是基于Excel2013,今天我们讲讲Excel2013的数据分析工具在哪里?分析工具库是在安装MicrosoftO
- 交叉熵损失函数(Cross-Entropy Loss)的基本概念与程序代码
小桥流水---人工智能
人工智能机器学习算法人工智能深度学习
交叉熵损失函数(Cross-EntropyLoss)是机器学习和深度学习中常用的损失函数之一,用于分类问题。其基本概念如下:1.基本解释:交叉熵损失函数衡量了模型预测的概率分布与真实概率分布之间的差异。在分类问题中,通常有一个真实的类别标签,而模型会输出一个概率分布,表示样本属于各个类别的概率。交叉熵损失函数通过比较这两个分布来计算损失,从而指导模型的优化。具体来说,对于二分类问题,真实标签通常表
- 机器学习:Softmax介绍及代码实现
是Dream呀
机器学习笔记神经网络机器学习人工智能python
Softmax原理Softmax函数用于将分类结果归一化,形成一个概率分布。作用类似于二分类中的Sigmoid函数。对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布p(z)。softmax可以用于实现上述结果,具体计算公式为:对于k维向量z来说,其中zi∈Rzi∈R,我们使用指数函数变换可以将元素的取值范围变换到(0,+∞)(0,+∞),之后我们再所有元素求和将结果缩放到[0,1]
- 【2018-10-02】条件随机场
BigBigFlower
条件随机场:给定随机变量x条件下,随机变量y的马尔科夫随机场。设X和Y是随机变量,P(Y|X)是在给定X的条件下Y的条件概率分布,若随机变量Y构成一个由无向图G=(V,E)表示的马尔科夫随机场,即满足马尔科夫性:w~v(与v连接的所有w)线性链条件随机场线性链条件随机场的参数形式:tk边上的特征函数,sl节点上的特征函数条件随机场的概率计算问题前向-后向算法定义前向向量:递推公式:定义后向向量:前
- [Python] KDE图[密度图(Kernel Density Estimate,核密度估计)]介绍和使用场景(案例)
老狼IT工作室
pythonpythonKDE密度分布图
KDE图是什么?核密度估计(KernelDensityEstimate,KDE)是一种非参数统计方法,用于估计未知随机变量的概率分布。它通过在每个数据点附近放置一个核函数,并将这些核函数加总起来,得到对概率分布的估计。KDE的主要思想是通过在每个数据点附近放置一个核函数来估计概率分布。核函数可以是各种形式,常用的有高斯核、均匀核等。核函数在数据点附近产生一个非负的函数值,表示该点附近的概率密度。然
- 鄂维南:从数学角度,理解机器学习的「黑魔法」,并应用于更广泛的科学问题...
人工智能与算法学习
神经网络人工智能大数据算法python
作者|Hertz来源|科学智能AISI北京时间2022年7月8日晚上22:30,鄂维南院士在2022年的国际数学家大会上作一小时大会报告(plenarytalk)。今天我们带来鄂老师演讲内容的分享。鄂老师首先分享了他对机器学习数学本质的理解(函数逼近、概率分布的逼近与采样、Bellman方程的求解);然后介绍了机器学习模型的逼近误差、泛化性质以及训练等方面的数学理论;最后介绍如何利用机器学习来求解
- 解锁机器学习多类分类之门:Softmax函数的全面指南
程序员Chino的日记
机器学习分类人工智能
1.引言Softmax函数的定义和基本概念Softmax函数,也称为归一化指数函数,是一个将向量映射到另一个向量的函数,其中输出向量的元素值代表了一个概率分布。在机器学习中,特别是在处理多类分类问题时,Softmax函数扮演着至关重要的角色。它可以将未归一化的数值转换成一个概率分布,使得每个类别都有一个对应的概率值,且所有类别的概率之和为1。Softmax在机器学习中的重要性在机器学习的多类分类问
- 数字图像处理实验记录八(图像压缩实验)
泉绮
数字图像处理实验记录图像处理matlab
前言:做这个实验的时候很忙,就都是你抄我我抄你了一、基础知识1.为什么要进行图像压缩:图像的数据量巨大,对计算机的处理速度、存储容量要求高。传输信道带宽、通信链路容量一定,需要减少传输数据量,提高通信速度。因此要进行图像压缩,减少数据量。2.怎么进行图像压缩:我们使用霍夫曼编码进行压缩。霍夫曼编码原理是利用信息符号概率分布特性的变字长的编码方法。对于出现概率大的信息符号编以短字长的码,对于出现概率
- MATLAB环境下使用同态滤波方法进行医学图像增强
哥廷根数学学派2023
matlab计算机视觉开发语言算法图像处理机器学习
目前图像增强技术主要分为基于空间域和基于频率域2大方面,基于空间域图像增强的方法包括了直方图均衡化方法和Retinex方法等,基于频率域的方法包括同态滤波方法。其中直方图均衡化方法只是根据图像的灰度概率分布函数进行简单的全局拉伸,没有考虑像素间的灰度联系情况,进行直方图均衡化后,会在一定程度上提高图像的对比度,但是图像的灰度级会进行合并进而减少,造成细节的丢失。而Retinex方法假定空间照度是缓
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul