什么是GPT模型?

GPT模型是由OpenAI团队创建的基于深度学习的语言模型的集合。在没有监督的情况下,这些模型可以执行各种NLP任务,如问答、文本蕴含、文本摘要等。

训练最多的GPT模型——GPT-4,超过1万亿个学习参数,比任何语言模型都要强大不止十倍。与其他模型相比,它的优势在于无需大量调整即可执行任务;它只需要很少的文本交互演示,其余的由模型完成。经过高级训练的GPT模型可以通过执行语言翻译、文本摘要、问答、聊天机器人集成、内容生成、情感分析、命名实体识别、文本分类、文本完成、文本到语音合成等等,让生活变得更轻松。

什么是GPT模型?

GPT代表GenerativePre-trainedTransformer,NLP中的第一个通用语言模型。以前,语言模型仅针对文本生成、摘要或分类等单一任务而设计。GPT是自然语言处理史上第一个可用于各种NLP任务的通用语言模型。现在让我们探索GPT的三个组成部分,即Generative、Pre-Trained和Transformer,并了解它们的含义。

生成:生成模型是用于生成新数据的统计模型。这些模型可以学习数据集中变量之间的关系,以生成与原始数据集中的数据点相似的新数据点。

预训练:这些模型已经使用大型数据集进行了预训练,可以在难以训练新模型时使用。尽管预训练模型可能并不完美,但它可以节省时间并提高性能。

Transformer:Transformer模型是一种人工神经网络,创建于2017年,是最著名的深度学习模型,能够处理文本等顺序数据。机器翻译和文本分类等许多任务都是使用转换器模型执行的。

GPT可以根据其训练的大型数据集及其数十亿参数的架构高精度地执行各种NLP任务,使其能够理解数据中的逻辑连接。GPT模型,如最新版本的GPT-3,已经使用来自五个大型数据集的文本进行了预训练,包括CommonCrawl和WebText2。语料库包含近万亿个单词,使GPT-3能够在没有任何数据示例的情况下快速执行NLP任务。

GPT模型的工作机制

GPT是一种基于transformer架构的AI语言模型,它是预训练的、生成的、无监督的,并且能够在零/一次/少量多任务设置中表现良好。它从用于NLP任务的标记序列中预测下一个标记(字符序列的实例),它尚未接受过训练。在只看到几个例子之后,它可以在某些基准测试中达到预期的结果,包括机器翻译、问答和完形填空任务。GPT模型主要根据条件概率计算某个词出现在另一个文本中的可能性。例如,在“Margaretisorganizingagaragesale…perhapswecouldpurchasethatold…”这句话中,椅子这个词比“大象”这个词更合适。还,transformer模型使用多个称为注意力块的单元来学习要关注文本序列的哪些部分。一个转换器可能有多个注意力模块,每个模块学习一种语言的不同方面。


 

Transformer架构有两个主要部分:主要对输入序列进行操作的编码器和在训练期间对目标序列进行操作并预测下一项的解码器。例如,转换器可能会采用一系列英语单词并预测正确翻译中的法语单词,直到它完成为止。

编码器确定应强调输入的哪些部分。例如,编码器可以读取“Thequickbrownfoxjumped”这样的句子。然后它计算嵌入矩阵(嵌入在NLP中允许具有相似含义的词具有相似的表示)并将其转换为一系列注意力向量。现在,什么是注意力向量?您可以将Transformer模型中的注意力向量视为一个特殊的计算器,它可以帮助模型了解任何给定信息的哪些部分对做出决策最重要。假设您在考试中被问到多个问题,您必须使用不同的信息片段来回答这些问题。注意力向量可帮助您选择最重要的信息来回答每个问题。在变压器模型的情况下,它以相同的方式工作。

你可能感兴趣的:(人工智能,深度学习,自然语言处理)