- 人工智能在新能源电网运行中的垂直应用与解决方案
人工智能
随着全球采用可再生能源的力度不断加大,可再生能源电力系统运营日趋复杂。传统的数值计算方法难以适应电力系统运营中的不确定性和复杂性。这篇论文全面研究了人工智能技术在可再生能源电力系统预测、调度、控制和电力市场中的应用前景以及对应的解决方案文章地址:NatureReviewElectricalEngineering来源公众号:新能源电网与AIGC洞察主要观点基于人工智能的方法可以帮助克服可再生能源发电
- 数值计算方法实验
小wal
数值计算方法数值计算方法实验报告
1.给定下述算法框图,用逐步扫描法和二分法求方程x5+3x-1=0的最小正根,要求准确到1/2×10-2。要求:(1)取步长h=1,先用逐步扫描法编程搜索一个隔根区间,将搜索到的隔根区间打印输出;(2)然后对该区间使用二分法求方程的满足精度要求的根,每二分一次,用新生成区间长度的一半作为是否二分结束的判断条件;(3)要求步长h和精度ε从键盘输入;(4)输出每一次二分过程所得到的区间端点ak、bk以
- 数值计算方法
POP-2000
第一章绪论1.1数值计算方法的研究对象和特点1.计算机解决科学计算问题的一般过程可概括为:实际问题->数学模型->计算方法->程序设计->上机计算。2.对算法所要考虑的问题:a.计算速度:eg:求解一个20阶线性方程组,用克莱姆法则要进行9.71020次运算,如用每秒1亿次乘法运算的计算机要30万年;而用加减消元法需3000次乘法运算.b.存储量c.数值稳定性3.数值计算方法的特点面向计算机,算
- 强化学习原理python篇05——蒙特卡罗方法
WuRobb
强化学习python开发语言
强化学习原理python篇05——MonteCarloMethods蒙特卡罗方法Ref本章全篇参考赵世钰老师的教材Mathmatical-Foundation-of-Reinforcement-LearningMonteCarloMethods章节,请各位结合阅读,本合集只专注于数学概念的代码实现。蒙特卡罗方法蒙特卡罗方法是一种基于随机模拟的数值计算方法,它的名字来源于摩纳哥的蒙特卡罗赌场。蒙特卡
- MCM备赛笔记——蒙特卡罗方法
我我我想出去玩
数学建模笔记数学建模
KeyConcept蒙特卡罗方法(MonteCarloMethod),也称为统计模拟方法,是一种基于概率和统计的数值计算方法。该方法使用随机数(或更常见的伪随机数)来解决可能非常复杂的数学或物理问题。蒙特卡罗方法广泛应用于金融、物理、工程、运筹学等领域。建模思路定义问题的概率模型:确定问题的数学或物理模型,并将其转化为可以通过概率方法解决的形式。生成随机数:根据问题的概率分布生成随机数或伪随机数序
- 【信号与系统】【北京航空航天大学】实验三、连续时间信号的频域分析 【MATLAB】
不是AI
信号与系统MATLABmatlab开发语言
一、实验目的1、掌握傅立叶变换(TheFourierTransform)及其性质;2、掌握连续时间信号傅立叶变换的数值计算方法;3、掌握利用MATLAB实现信号的幅度调制(AmplitudeModulation,AM)的方法;4、掌握利用MATLAB实现对周期信号的频谱分析。二、实验内容1、MATLAB代码:>>clearall;>>t=-4:0.001:4;>>N=input('N=');N=3
- 插值算法——数学建模清风笔记
沐尘.affluent
数学建模笔记
数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。建模实例:MathorCup第六届A题淡水养殖池塘水华发生及池水净化处理参考资料:刘春凤:中国大学MOOC数值计算方法插值法的定义插值法的概念:设函数y=f(x)在区间[a,b]上有定义,且
- 大飞机与计算机CFD模拟仿真:推动航空工业的技术革命
a谷雨c
CFD模拟仿真AirpakFluentTecplot人工智能算法
大飞机与计算机CFD模拟仿真:推动航空工业的技术革命随着科技的飞速发展,计算机技术已经成为现代工业制造的核心驱动力。在航空工业中,计算流体动力学(CFD)模拟仿真技术发挥着越来越重要的作用。大飞机设计制造是一个高度复杂且精密的过程,涉及空气动力学、结构力学、热力学等多个学科。CFD模拟仿真技术通过数值计算方法模拟飞行器的流体动力学行为,为设计人员提供真实、准确的飞行器性能数据,从而优化设计方案、降
- 数值分析-牛顿插值公式
轩Scott
机器学习算法概率论
目录一、引言二、牛顿插值公式的基本概念1.插值问题2.插值多项式3.牛顿插值公式三、牛顿插值公式的推导过程四、牛顿插值公式的应用1.图像处理2.信号处理五、牛顿插值公式的优缺点1.优点2.缺点六、总结一、引言在数值分析中,插值是一种重要的数值计算方法,它可以通过已知的一些数据点来推断出未知的数据点。插值方法在实际应用中有着广泛的应用,例如在图像处理、信号处理、地图绘制等领域都有着重要的作用。牛顿插
- 【python】用蒙塔卡罗方法的重要性采样估计定积分
Dongzizhu
数学代码python机器学习统计学数据挖掘
前几天在用蒙特卡洛方法估计定积分的时候,发现中文网站上这方面的资料很少,即使有也没有说的很详细,所以这里专门写一篇博文记录自己的学习,仅供大家参考。欢迎指点。蒙特卡洛方法蒙特卡罗方法(MonteCarlomethod),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。简单来说,MCM就是一种使用随机数(或
- 数值分析-欧拉方法的概念、原理与应用
轩Scott
算法机器学习线性代数
目录一、前言二、欧拉方法的概念三、欧拉方法的原理四、欧拉方法的优缺点五、欧拉方法的应用六、欧拉方法的改进七、欧拉方法的实现八、总结一、前言数值分析是一门研究数值计算方法的学科,它主要研究如何利用计算机对数学问题进行求解。欧拉方法是数值分析中的一种常见方法,它可以用来求解常微分方程的数值解。本文将介绍欧拉方法的概念、原理、优缺点、应用、改进以及实现方法。二、欧拉方法的概念欧拉方法是一种数值求解常微分
- 《工程数值计算Python教程》笔记
丷从心
数值计算方法数值计算方法Python
文章目录@[toc]第一章:绪论1.11.11.1|数值计算在工程科学中的重要性1.21.21.2|数值计算方法1.31.31.3|程序设计盒图计算方法的选取减少运算次数避免相近的数相减1.41.41.4|误差的来源、表示及传递误差的来源和分类模型误差观测误差截断误差舍入误差误差的表示绝对误差相对误差平均误差标准误差误差的传递误差在和、差计算中的传递绝对误差相对误差误差在积、商计算中的传递乘积的绝
- 使用Python实现蒙特卡罗算法
后端架构魔法构筑者
算法python机器学习Python
使用Python实现蒙特卡罗算法蒙特卡罗算法是一种基于随机抽样的数值计算方法,常用于解决复杂的数学问题和模拟实验。它通过生成大量的随机样本,并利用这些样本来估计问题的解或概率分布。在本文中,我们将使用Python编写代码来实现蒙特卡罗算法,并通过一个简单的例子来演示其应用。首先,让我们看一个简单的问题:估计圆周率π的值。蒙特卡罗算法可以通过在一个正方形内随机生成均匀分布的点,并统计落在一个单位圆内
- 机器人可操作度 matlab,并联机器人可操作度分析的蒙特卡罗方法
weixin_39957027
机器人可操作度matlab
引言蒙特卡罗法是以概率统计理论为指导的一类非常重要的数值计算方法,以其简单、实用、通用性强的特点而被广泛应用于机器人工作空间的研究中[16]。研究发现,蒙特卡罗法生成的工作空间的随机点分布是不均匀的[3],这种不均匀性中蕴含着与机器人运动特性有关的信息。文献[78]在D-H法求串联机器人位置正解的基础上,基于卷积理论推导出了蒙特卡罗法生成的串联机器人工作空间上点的分布不均匀程度与机器人可操作度的关
- 列主元消去法c语言实验报告,高斯列主元消去法实验报告
世界上最后一只猫
列主元消去法c语言实验报告
高斯列主元消去法实验报告《数值计算方法》实验报告专业:年级:学号:姓名:成绩:1.实验名称实验2高斯列主元消去法2.:用Gauss列主消去法求解线性方程组0.001*X1+2.000*X2+3.000*X3=1.000-1.000*X1+3.217*X2+4.623*X3=2.000-2.000*X1+1.072*X2+5.643*X3=3.0003.实验目的a.熟悉运用已学的数值运算方法求解线性
- matlab追赶法解三对角方程组_数值计算方法 第三章 线性代数方程组的直接解法(1)...
weixin_39827728
写在章前:求解线性方程组的数值方法大体上可分为直接法和迭代法两大类.。直接法是指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解法,又称为精确法;迭代法则是采取逐次逼近的方法,亦即从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是方程组的精确解,只经过有限次运算往往得不到精确解。在这一章,我们将主要介绍解线性方程组的一些基本的直接法。一、Gauss消去法1、三角形方
- MATLAB实现插值法绘制sin函数
CyberJolt
matlab算法开发语言Matlab
MATLAB实现插值法绘制sin函数插值法是一种常用的数值计算方法,它可以通过已知的离散数据点,推断出在这些点之间的函数值。在本文中,我们将使用MATLAB来实现插值法,并用插值法绘制sin函数曲线。首先,我们需要定义一组离散的数据点,以及要进行插值的区间。在这里,我们选择在区间[0,2π]上定义离散的数据点,并使用插值法在该区间内生成sin函数的曲线。下面是MATLAB的源代码实现:%定义离散数
- 【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】
QomolangmaH
#计算方法与科学建模插值Newton插值pythonc语言
文章目录一、近似表达方式1.插值(Interpolation)2.拟合(Fitting)3.投影(Projection)二、Lagrange插值1.拉格朗日插值方法2.Lagrange插值公式a.线性插值(n=1)b.抛物插值(n=2)三、Newton插值1.天书2.人话3.例题4.python实现5.C语言实现一、近似表达方式 插值、拟合和投影都是常用的近似表达方式,用于对数据或函数进行估计、
- 深入理解强化学习——马尔可夫决策过程:蒙特卡洛方法-[基础知识]
von Neumann
深入理解强化学习人工智能强化学习深度强化学习马尔可夫决策过程蒙特卡洛方法马尔科夫决策过程马尔可夫过程
分类目录:《深入理解强化学习》总目录蒙特卡洛方法(Monte-CarloMethods)也被称为统计模拟方法,是一种基于概率统计的数值计算方法。运用蒙特卡洛方法时,我们通常使用重复随机抽样,然后运用概率统计方法来从抽样结果中归纳出我们想求的目标的数值估计。一个简单的例子是用蒙特卡洛方法来计算圆的面积。例如,在下图所示的正方形内部随机产生若干个点,细数落在圆中点的个数,圆的面积与正方形面积之比就等于
- 【数值计算方法(黄明游)】函数插值与曲线拟合(一):Lagrange插值【理论到程序】
QomolangmaH
#计算方法与科学建模算法插值python
文章目录一、近似表达方式1.插值(Interpolation)2.拟合(Fitting)3.投影(Projection)二、Lagrange插值1.天书2.人话拉格朗日插值方法a.线性插值(n=1)基本思想线性插值与线性方程组b.抛物插值(n=2)基本思想优点和局限性应用场景c.n次插值基本思想插值基函数的选择优点和和局限性3.python实现4.C语言实现一、近似表达方式 插值、拟合和投影都是
- 【数值计算方法(黄明游)】矩阵特征值与特征向量的计算(五):Householder方法【理论到程序】
QomolangmaH
#计算方法与科学建模矩阵python线性代数算法特征值特征向量人工智能
文章目录一、Jacobi旋转法二、Jacobi过关法三、Householder方法1.旋转变换a.旋转变换的选择b.旋转变换的顺序2.Householder矩阵(HouseholderMatrix)a.H矩阵的定义b.H变换的几何解释c.H变换的应用场景3.H变换过程详解a.过程介绍b.细节解析4.H变换例题解析四、Python实现调试过程 矩阵的特征值(eigenvalue)和特征向量(eig
- 【数值计算方法(黄明游)】矩阵特征值与特征向量的计算(二):Jacobi 过关法(Jacobi 旋转法的改进)【理论到程序】
QomolangmaH
#计算方法与科学建模矩阵算法线性代数特征值特征向量数据结构
文章目录一、Jacobi旋转法1.基本思想2.注意事项二、Jacobi过关法1.基本思想2.注意事项三、Python实现迭代过程(调试) 矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法,Jacobi过关法是Jacobi旋转法的一种改进版本,其主要目的是减少计算工作和
- 牛顿迭代法求解方程根——C语言
不懂c语言的小白
c语言算法线性代数
牛顿迭代法是一种求解非线性方程的数值计算方法,它的基本思路是通过不断迭代逼近方程的根。下面我们将介绍如何使用C语言编写牛顿迭代法求解方程根的代码,并利用博客对代码进行解释。一、牛顿迭代法原理牛顿迭代法的基本原理是利用函数f(x)在点x_0处的切线来逼近函数的零点,将切线与X轴交点作为下一个近似值x_1,如此往复迭代下去,直到收敛为止。假设f(x)在x_0处可导,则f(x)在x_0点的切线方程为:y
- 【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向后Euler)【理论到程序】
QomolangmaH
#计算方法与科学建模python开发语言算法欧拉方法向后Euler
文章目录一、数值积分法1.一般步骤2.数值方法二、欧拉方法(EulerMethod)1.向前欧拉法(前向欧拉法)2.向后欧拉法(后向欧拉法)a.基本理论b.算法实现 常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(OrdinaryDifferentialEquations,ODEs)的问题。一、数值积分法1.一般步骤确定微分方程:给定微分方程组y′(x)=f(x,
- 【数值计算方法(黄明游)】矩阵特征值与特征向量的计算(三):Jacobi 旋转法【理论到程序】
QomolangmaH
#计算方法与科学建模矩阵python算法Jacobi旋转法特征值特征向量
文章目录一、Jacobi旋转法1.基本思想2.计算过程演示二、Python实现迭代过程(调试) 矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法。 本文将详细介绍Jacobi旋转法的基本原理和步骤,通过一个具体的矩阵示例演示其应用过程,并给出其Python实现。一、
- 常微分方程(ODE)的数值计算方法
强劲九
数学算法数值计算ODE常微分方程runge-kuttamethods
目录1/欧拉法(EulerMethod)[^2]2/龙格-库塔法(Runge-KuttaMethod)2.1/四阶Runge-Kutta方法2.2/Runge-Kutta的一般形式参考常微分方程组的求解比较麻烦,通常在计算机上使用数值计算的方式去进行。假设一阶常微分方程组(ODEs)由下式给出dxdt=fi(x),i=1,2,…,n\frac{dx}{dt}=f_i(x),~i=1,2,\dots
- 【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向前Euler)【理论到程序】
QomolangmaH
#计算方法与科学建模python开发语言数值积分法算法欧拉方法向前欧拉
文章目录一、数值积分法1.一般步骤2.数值方法二、欧拉方法(EulerMethod)1.向前欧拉法(前向欧拉法)a.基本理论b.典例解析c.算法实现 常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(OrdinaryDifferentialEquations,ODEs)的问题。一、数值积分法1.一般步骤确定微分方程:给定微分方程组y′(x)=f(x,y(x))y'(
- 数值计算方法 Chapter7. 计算矩阵的特征值和特征向量
Espresso Macchiato
基础数学幂法反幂法计算方法特征值数值求解Jacobi方法
数值计算方法Chapter7.计算矩阵的特征值和特征向量0.问题描述1.幂法1.思路2.规范运算3.伪代码实现2.反幂法1.思路&方法2.伪代码实现3.实对称矩阵的Jacobi方法1.思路&方法2.伪代码实现0.问题描述这一章节面对的问题是说,给定一个nnn阶矩阵,如何数值求解其特征值,即:Ax=λxAx=\lambdaxAx=λx1.幂法1.思路幂法的主要思路其实依然还是来源于迭代思想。显然,对
- 【数值计算方法】矩阵特征值与特征向量的计算(一):Jacobi 旋转法及其Python实现
QomolangmaH
#数值计算方法python矩阵Jacobi旋转法特征值特征向量人工智能算法
文章目录一、Jacobi旋转法1.基本思想2.计算过程演示3.注意事项二、Python实现迭代过程(调试) 矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法。 本文将详细介绍Jacobi旋转法的基本原理和步骤,通过一个具体的矩阵示例演示其应用过程,并给出其Pytho
- 蒙特卡洛方法(Monte Carlo method,也有翻译成“蒙特卡罗方法”)
DL-ML
机器学习
蒙特卡洛方法(MonteCarlomethod,也有翻译成“蒙特卡罗方法”)是以概率和统计的理论、方法为基础的一种数值计算方法,将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解,故又称随机抽样法或统计试验法。上述就是蒙特卡洛方法的基本概念,比较抽象,下面结合实际工作中的理解,谈一谈对蒙特卡洛方法的一些认识。(1)首先,蒙特卡洛不是个人名,而是个地名,说明该方法与
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地