- 七成月活过亿 APP 已接入人工智能
自不量力的A同学
人工智能
2025年3月4日,第三方数据机构QuestMobile发布的《2024中国移动互联网年度大报告》显示,截至2024年12月,月活用户过亿的APP中,有超过七成已接入AI123。相关具体情况如下2:整体背景:2024年全网月活用户已达12.57亿,一线、新一线、二线城市用户接近五成,其中一线城市用户同比增长了1.2%。用户对互联网的使用程度加深,整体月人均使用时长达到171.7小时,短视频、即时通
- Imagen原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Imagen原理与代码实例讲解1.背景介绍在人工智能领域中,图像生成一直是一个具有挑战性的任务。传统的计算机视觉模型通常专注于理解和分析现有图像,而生成全新的高质量图像则需要更高级的技术。随着深度学习技术的不断发展,生成式对抗网络(GenerativeAdversarialNetworks,GAN)等新型模型逐渐展现出了令人惊叹的图像生成能力。谷歌的Imagen就是一种基于大型视觉语言模型的全新图
- 大数据分析服务器硬件配置如何选择
elva428204358
服务器服务器
大数据,现如今已被人工智能替代。我们先不讨论人工智能,就大数据而言,我们都是在强调他的技术,而我们在用大数据时候,经常用它的来神话它的影响。例如,广告投放精准化,社会安全管理有序,医药行业智能化等。一、建立大数据分析服务器的五个基本方面1、可视化分析:大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,
- 提高客户体验:人类计算在营销中的应用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
人类计算与营销:开启个性化时代的未来人类计算与营销:开启个性化时代的未来关键词:人工智能、个性化营销、客户体验、数据驱动、客户关系管理摘要:本文探讨了人类计算在营销中的应用,包括语音识别、人脸识别、自然语言处理等技术,以及如何通过这些技术实现个性化营销、客户关系管理和用户体验优化。文章分析了当前技术的发展趋势和面临的挑战,并提出了未来发展的方向。引言随着人工智能技术的飞速发展,人类计算在各个领域中
- 《DeepSeek+Langchain落地实操:RAG知识增强检索和智能体实战开发》
AI周红伟
langchain
大数据与人工智能实战专家—周红伟老师法国科学院数据算法博士/曾任阿里人工智能专家/曾任马上消费金融风控负责人课程背景LangChain是一项旨在赋能开发人员利用语言模型构建端到端应用程序的强大框架。它的设计理念在于简化和加速利用大型语言模型(LLM)和对话模型构建应用程序的过程。这个框架提供了一套全面的工具、组件和接口,旨在简化基于大型语言模型和对话模型的应用程序开发过程。LangChain本质上
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- 大模型时代,什么是tokens?
人工智能
大模型时代,什么是tokens?前言在当今大模型主导的人工智能浪潮中,我们见证了诸多令人惊叹的应用。从精准流畅的语言翻译,到能够根据简单提示创作出富有创意故事的文本生成工具,大模型展现出了强大的能力。然而,在这些复杂且神奇的模型背后,有一个基础而关键的概念——tokens,它犹如大模型世界的基石,支撑着整个模型的运行与发展。理解tokens,对于我们深入认识大模型如何处理信息、优化性能以及合理应用
- AI时代的多模态输入与理解:挑战与局限性
智享食事
人工智能
随着人工智能技术的快速发展,以及AI的普及,AI系统逐渐在各个领域展现出强大的潜力,一种感觉AI已经无所不能,已经很快就要取代我们人类,甚至代替我们工作。然而,现实情况并没有这么乐观,现实中AI要实现与人类相似的感知和理解,仍然面临着许多技术和应用上的难题。本文将从几个方面探讨当前AI在多模态输入与理解中的局限性,特别是在教育、心理咨询、医疗诊断等领域的应用挑战。一、多模态输入的现状与不完善所谓多
- Python3 与 VSCode:深度对比分析
lly202406
开发语言
Python3与VSCode:深度对比分析引言Python3和VisualStudioCode(VSCode)在软件开发领域扮演着举足轻重的角色。Python3作为一门强大的编程语言,拥有丰富的库和框架,广泛应用于数据科学、人工智能、网络开发等多个领域。而VSCode作为一款轻量级且功能强大的代码编辑器,以其出色的性能和丰富的插件支持,受到了广大开发者的喜爱。本文将对Python3和VSCode进
- 关于自然语言处理(三)深度学习中的文字序列数据的分词操作
MatrixSparse
大模型人工智能自然语言处理深度学习人工智能
深度学习中的文字序列数据二维文字序列在文字数据中,样本与样本之间的联系是语义的联系,语义的联系即是词与词之间、字与字之间的联系,因此在文字序列中每个样本是一个单词或一个字(对英文来说大部分时候是一个单词,偶尔也可以是更小的语言单位,如字母或半词),故而在中文文字数据中,一张二维表往往是一个句子或一段话,而单个样本则表示单词或字。此时,不能够打乱顺序的维度是vocab_size,它代表了一个句子/一
- 【开源项目】2024最新PHP在线客服系统源码/带预知消息/带搭建教程
于飞SEO
免费资源分享开源php开发语言
简介随着人工智能技术的飞速发展,AI驱动的在线客服系统已经成为企业提升客户服务质量和效率的重要工具。本文将探讨AI在线客服系统的理论基础,并展示如何使用PHP语言实现一个简单的AI客服系统。源码仓库地址:ym.fzapp.top在线客服系统的理论基础AI在线客服系统通过自然语言处理(NLP)、机器学习(ML)和深度学习(DL)技术,能够理解和响应客户的查询。这些系统通常包括以下几个关键组件:自然语
- 文生图 图生视频 文生视频人工智能AI工具节选
行思理
AI人工智能文生图文生视频图生视频数字人
1、MidjourneyAI图像和插画生成工具,官网地址:Midjourney中文站,MJ中文站-专业AI绘图网站2、StableDiffusion一种基于扩散技术的深度学习文本转图像模型,演示地址:StabilityAI3、通义万相阿里云通义大模型旗下的AI创意作画与视频生成平台,官网地址:通义万相_AI创意作画_AI绘画_人工智能-阿里云4、PhotoStudioAI模特AI商品图及视频一键生
- ChatGPT-4o引领医学革命:临床科研创新与效率的新纪元
小艳加油
教程语言类人工智能数据分析ChatGPT-4o临床医学
2024年5月12日,更强版本的ChatGPT-4o上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。因此,帮助广大临床医学相关的医院管理人员、医生、学生、科研人员更加熟练地掌握ChatGPT-4o在临床医学日常生活、工作与学习、课题申报、论文选题、实验方案设计、实验数据统计分析与可视化等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理
- Manus:通用型Agent的技术革新与多元应用场景
蚂蚁质量
其他python深度学习
一、Manus前沿洞察Manus,作为Monica团队匠心打造的全球首款通用型Agent产品,名称源于拉丁文“mensetmanus”,意即“手”,深刻寓意着知识与行动的深度融合。其核心理念独树一帜,旨在为大语言模型(LLM)赋予“手”的能力,使其借助工具调用与任务执行,将抽象知识转化为切实可行的实际操作,开启人工智能应用的崭新时代。二、精巧技术架构Manus的技术架构兼具高度灵活性与卓越扩展性,
- AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美关键词:AI生成内容(AIGC),ChatGPT,Midjourney,中国古风,创意设计,艺术表达1.背景介绍1.1问题由来人工智能生成内容(ArtificialIntelligenceGeneratedContent,AIGC)作为AI技术的重要分支,近年来在视觉、音乐、文本等多个领域取得了显著进展,引领了内容创作
- 人工智能引领技术革命:ChatGPT与深度学习的突破性进展
撒旦骑路西法,大战吕布
国内外安全资讯人工智能
在全球科技快速发展的今天,人工智能(AI)正以前所未有的速度渗透到各个行业,成为推动社会变革的重要力量。特别是在自然语言处理(NLP)领域,OpenAI的ChatGPT凭借深度学习技术的持续突破,展现了AI在理解、推理、对话生成等方面的惊人进步。本文将深入探讨ChatGPT及深度学习的最新突破,以及它对不同行业的深远影响。1.ChatGPT:AI语言模型的革新者1.1什么是ChatGPT?Chat
- 《即梦牵手DeepSeek,AI创作领域的变革与未来》
空云风语
人工智能人工智能
《即梦牵手DeepSeek,AI创作领域的变革与未来》开篇:科技融合,梦想启航在当今科技飞速发展的时代,人工智能(AI)无疑是最为耀眼的领域之一。新的技术和创新不断涌现,推动着AI行业的边界持续拓展。近期,AI领域又迎来了一个令人瞩目的大事件:即梦正式接入DeepSeek,这一强强联合的举措,犹如一颗投入湖面的巨石,激起千层浪,在整个AI行业引发了广泛关注和热烈讨论。即梦,作为字节跳动旗下极具创新
- 大模型与Java的深度融合:现状、实践、挑战与未来
软件职业规划
java开发语言
一、引言:大模型与Java的交汇近年来,大模型技术在人工智能领域迅速崛起,成为推动智能应用发展的核心力量。与此同时,Java作为一种历史悠久且广泛应用于企业级开发的编程语言,凭借其强大的生态系统、跨平台特性和稳定性,一直是软件开发领域的中流砥柱。随着大模型技术的普及,Java与大模型的结合成为了一个备受关注的热点话题。这种结合不仅为Java开发者带来了新的机遇,也为大模型的落地应用提供了更广阔的场
- 电机的声音数据进行AI分析
鹿屿二向箔
人工智能
对电机的声音数据进行分析,尤其是当数据来源于加速度传感器时,涉及到的不仅仅是声音分析,还包含了振动分析。这类问题通常可以归类于机械故障诊断或预测性维护领域。以下是一些适合处理这种类型数据的人工智能模型和方法:1.特征工程+传统机器学习模型在直接应用深度学习之前,通常首先会进行特征提取。对于振动信号(即使通过加速度传感器采集),常用的方法包括计算频域特征(如傅里叶变换后的频谱)、时域特征(如均方根值
- 大规模语言模型构建流程
人工智能技术笔记
语言模型人工智能自然语言处理
大规模语言模型1.大语言模型大规模语言模型(LargeLanguageModels,LLM),也称大语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,通常使用自监督学习方法通过大量无标注文本进行训练。2.预训练语言模型受到计算机视觉领域采用ImageNet对模型进行一次预训练,使得模型可以通过海量图像充分学习如何提取特征,然后再根据任务目标进行模型精调的预训练范式影响,自然语言处理
- Python简介
Gao_xu_sheng
python开发语言
Python前言Python一直是一门优秀的编程语言,不仅简洁、易用,而且功能强大,它能做到的事情太多了,既可用于开发桌面应用,也可用于做网络编程,网络爬虫,还有很重要的领域就是AI大模型开发。近年来,随着人工智能(AI)和机器学习(ML)领域的迅猛发展,Python在这些前沿技术中扮演了至关重要的角色,特别是在构建和训练大规模机器学习方面。Python拥有丰富的库和框架,这些工具极大地促进了AI
- 深度解析DeepSeek:从技术架构到实战应用
YY...yy
aiDeepSeek
一、引言:为什么选择DeepSeek?在2025年人工智能领域竞争白热化的今天,DeepSeek以其超低训练成本(仅为GPT-4o的1/20)和业界领先的推理能力,成为全球开发者关注的焦点。据权威数据显示,DeepSeek-V3在多语言编程和数学推理任务中的表现已超越Llama-3.1等主流模型4,而其最新发布的DeepSeek-R1更是在苹果应用商店美区免费榜冲至第六名6。二、技术架构解析2.1
- vscode 都有哪些大模型编程插件
魔王阿卡纳兹
IT杂谈开源项目观察vscodeide编辑器
VSCode中有许多基于大模型的编程插件,这些插件通过集成人工智能技术,显著提升了开发者的编程效率和体验。以下是一些主要的大模型编程插件及其功能:GitHubCopilotGitHubCopilot是由OpenAI开发的插件,能够根据代码上下文自动生成代码建议,支持多种编程语言。它与VSCode的集成使得开发者可以在熟悉的开发环境中直接利用AI功能,提高代码生成和调试的效率。DevChatDevC
- DeepSeek大模型技术解析:从架构到应用的全面探索
小涂Ss
架构人工智能语言模型AI大模型DeepSeekagiai
一、引言在人工智能领域,大模型的发展日新月异,其中DeepSeek大模型凭借其卓越的性能和广泛的应用场景,迅速成为业界的焦点。本文旨在深入剖析DeepSeek大模型的技术细节,从架构到应用进行全面探索,以期为读者提供一个全面而深入的理解。官网:https://www.deepseek.com/1、DeepSeek大模型简介DeepSeek大模型是由北京深度求索人工智能基础技术研究有限公司开发的一款
- Manus全球首个通用Agent,Manus AI:Agent应用的ChatGPT时刻
ππ记录
人工智能chatgptManus详细介绍Manus介绍Manus详细应用Manus教程Manus详情介绍
文章目录前言ManusAI:全球首个通用AgentManusAI:技术架构与创始人经历AIAgent的实现框架与启示AIAgent的发展预测行业风险提示前言这是一篇关于ManusAI及其在通用人工智能领域的应用和前景的报告,主要介绍了ManusAI的产品定位、功能、技术架构、创始人经历以及AIAgent的发展预测和实现框架。以下是对这些核心内容的简要概述:Manus全网最全资料(持续更新)链接:h
- 【自然语言处理-NLP】情感分析与主题建模
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习自然语言处理人工智能情感分析主题建模深度学习机器学习NLP
以下内容详细剖析了NLP中情感分析(SentimentAnalysis)和主题建模(TopicModeling)的技术与方法,分别展示如何从文本中提取情感倾向和潜在主题,并提供示例代码和讲解,可在Python环境下直接运行。目录情感分析(SentimentAnalysis)1.1概念与方法概览1.2传统机器学习方法1.3深度学习与预训练模型1.4代码示例:基于机器学习的情感分类主题建模(Topic
- 眼见不一定为实,孙悟空教你AI换脸换声的技术原理及如何用火眼金睛识别新型诈骗
非知名人士
人工智能
话说俺老孙自从大闹天宫归来,闲来无事,忽闻人间兴起一门奇术——所谓“换脸换声”。听说那乃现代科学家利用人工智能之奥秘,将人脸、声音通通变换得跟戏法似的,让人真假难辨。俺老孙心生好奇,便跃上筋斗云,直奔这科技之都,打算探个究竟。今就由俺老孙来给你们摆一摆,这换脸换声究竟是咋回事,就像俺大闹天宫时施展变化,变化无穷,妙趣横生!话说那日俺老孙正在花果山上闲逛,忽然听见猪八戒捧着一部闪闪发光的“小机灵”—
- 专业 英语
程序员爱德华
英语专业英语
文章目录一、计算机1.计算机基础(1)计算机组成原理(2)计算机网络(3)数据库(4)编译原理(5)离散数学2.软件开发(1)编程词汇(2)开发术语(3)Linux(4)软件3.就业领域(1)职场(2)芯片(3)自动驾驶(4)嵌入式硬件4.深度学习(1)论文(2)深度学习DL(3)计算机视觉CV(4)自然语言处理NLP(5)推荐系统(6)计算机图形学二、数学三、机械、材料四、医药五、英美计量单位一
- LLM大模型安全概述
LLM教程
安全人工智能chatgptembeddinglangchainllama
引言2022年底以来,以ChatGPT为代表的大模型飞速发展,正在成为#驱动新质生产力发展#的新动能、人类探索未知的新工具.在显著提升人工智能(artificialintelligence,AI)模型通用理解和生成能力的同时,也带来了前所未有的安全风险.大模型的能力与风险生成式大模型因其强大的智能能力和巨大的应用潜力吸引了众多研究者和企业的关注.从智能能力的角度来看,研究人员观测到:当训练数据和参
- Deepseek r1回答:人工智能的本质是什么? 给人类社会带来的意义是什么? 相比于之前的互联网革命,这一轮的人工智能革命的特点和异同点有哪些?
强化学习曾小健
Deepseek原理与使用人工智能
嗯,用户问的是人工智能的本质、对社会的意义,以及和互联网革命的比较。首先得拆解这三个问题,逐个分析。用户可能对AI有一定了解,但想深入理解其核心和影响。可能需要从技术、社会、历史角度切入。先想AI的本质。本质是什么?是模拟人类智能,还是数据处理?可能需要提到机器学习、深度学习,尤其是神经网络。但本质可能更深层,比如自主决策、模式识别。还要区分弱AI和强AI,现在都是弱AI,专注于特定任务。然后是意
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo