实时分布式低延迟OLAP数据库Apache Pinot探索实操

Pinot可直接从流数据源(如Apache Kafka和Amazon Kinesis)中摄取数据,基于实时事件实现即时的查询。还可以从批处理数据源中摄取数据,如Hadoop HDFS、Amazon S3、Azure ADLS和谷歌云存储。核心采用列式存储,基于智能索引和预聚合技术实现低延迟;还提供内部仪表板、异常检测和临时数据探索。

image-20230331171801564

特性

Pinot最初是在LinkedIn上构建的,用于支持丰富的交互式实时分析应用程序,如Who Viewed Profile, Company Analytics, Talent Insights等等。

  • 面向列:面向列的存储技术,并提供各种压缩方案。
  • 可插索引:可插拔的索引技术,支持排序索引、位图索引、倒排索引。
  • 查询优化:能够基于查询和段元数据优化查询/执行计划。
  • 来自Kafka、Kinesis等流的近实时摄取,以及来自Hadoop、S3、Azure、GCS等源的批量摄取
  • 类似sql的语言,支持对数据的选择、聚合、过滤、分组、排序和不同的查询。
  • 支持多值字段
  • 水平可扩展和容错

何时使用

Pinot旨在为大型数据集提供低延迟查询;为了实现这一性能,Pinot以列式格式存储数据,并添加额外的索引来执行快速过滤、聚合和分组。原始数据被分解成小的数据碎片,每个碎片被转换成一个称为段的单位。一个或多个段一起形成一个表,这是使用SQL/PQL查询Pinot的逻辑容器。Pinot非常适合查询具有许多维度和指标的时间序列数据。Pinot不是数据库的替代品,也即是它不能用作真值存储的来源,不能改变数据。虽然Pinot支持文本搜索,但它并不能取代搜索引擎。此外,默认情况下,Pinot查询不能跨多个表,但可以使用Trino-Pinot连接器或preto-pinot连接器来实现表连接和其他功能。主要使用场景如下:

  • 面向用户分析的产品
  • 用于业务指标的实时仪表板
  • 异常检测

部署

Local安装

快速启动

# 下载Pinot发行版最新版本0.12.1,需要JDK11或以上版本,JDK16除外
PINOT_VERSION=0.12.1 
wget https://downloads.apache.org/pinot/apache-pinot-$PINOT_VERSION/apache-pinot-$PINOT_VERSION-bin.tar.gz
# 解压文件
tar -zxvf apache-pinot-$PINOT_VERSION-bin.tar.gz
# 导航到包含启动程序脚本的目录:
cd apache-pinot-$PINOT_VERSION-bin
# 有两种方法启动:快速启动或手动设置集群。
# Pinot附带快速启动命令,可以在同一进程中启动Pinot组件实例,并导入预构建的数据集。下面的快速启动命令启动预装棒球数据集的Pinot,所有可用的快速入门命令列表请参见快速入门示例。
./bin/pinot-admin.sh QuickStart -type batch

手动设置集群

# 如果想处理更大的数据集(超过几兆字节),可以单独启动Pinot各个组件,并将它们扩展到多个实例
# 启动Zookeeper
./bin/pinot-admin.sh StartZookeeper \
  -zkPort 2191
# 启动Pinot Controller
export JAVA_OPTS="-Xms4G -Xmx8G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-controller.log"
./bin/pinot-admin.sh StartController \
    -zkAddress localhost:2191 \
    -controllerPort 9000
# 启动Pinot Broker
export JAVA_OPTS="-Xms4G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-broker.log"
./bin/pinot-admin.sh StartBroker \
    -zkAddress localhost:2191
# 启动Pinot Server
export JAVA_OPTS="-Xms4G -Xmx16G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-server.log"
./bin/pinot-admin.sh StartServer \
    -zkAddress localhost:2191
# 启动Kafka
./bin/pinot-admin.sh  StartKafka \ 
  -zkAddress=localhost:2191/kafka \
  -port 19092

Docker安装

快速启动

# 启动Apache Zookeeper、Pinot Controller、Pinot Broker和Pinot Server。创建baseballStats表启动一个独立的数据摄取作业,为baseballStats表的给定CSV数据文件构建一个段,并将该段推到Pinot Controller。向Pinot发出示例查询
docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type batch

启动完后生成示例数据,可以通过查询控制台进行SQL编辑查询,显示查询结果并可以导出EXCEL和CSV格式文件。

image-20230414145955411

官方还提供多种多种数据类型格式样例数据,比如JSON

# 启动Apache Zookeeper、Pinot Controller、Pinot Broker和Pinot Server。创建githubEvents表启动一个独立的数据摄取作业,为githubEvents表的给定JSON数据文件构建一个段,并将该段推到Pinot Controller。向Pinot发出示例查询
docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type batch_json_index

image-20230414150954870

还提供其他流式、Upsert、混合的类型,各位有兴趣可以详细查看

docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type batch_complex_type
docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type stream
docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type realtime_minion 
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type stream_complex_type
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type upsert
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type upsert_json_index
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type hybrid
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type join

手动启动集群

# 创建网络,在docker中创建一个隔离的桥接网络
docker network create -d bridge pinot-demo
# 启动 Zookeeper,以daemon模式启动Zookeeper。这是一个单节点zookeeper设置。Zookeeper是Pinot的中央元数据存储,应该设置为用于生产的复制。更多信息请参见运行复制的Zookeeper。
docker run \
    --network=pinot-demo \
    --name pinot-zookeeper \
    --restart always \
    -p 2181:2181 \
    -d zookeeper:3.5.6
# 启动 Pinot Controller,在守护进程中启动Pinot Controller并连接到Zookeeper。下面的命令需要一个4GB的内存容器。如果您的机器没有足够的资源,那么就调整- xms和xmx。
docker run --rm -ti \
    --network=pinot-demo \
    --name pinot-controller \
    -p 9000:9000 \
    -e JAVA_OPTS="-Dplugins.dir=/opt/pinot/plugins -Xms1G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-controller.log" \
    -d ${PINOT_IMAGE} StartController \
    -zkAddress pinot-zookeeper:2181
# 启动 Pinot Broker,在守护进程中启动Pinot Broker并连接到Zookeeper。下面的命令需要一个4GB的内存容器。如果您的机器没有足够的资源,那么就调整- xms和xmx。
docker run --rm -ti \
    --network=pinot-demo \
    --name pinot-broker \
    -p 8099:8099 \
    -e JAVA_OPTS="-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-broker.log" \
    -d ${PINOT_IMAGE} StartBroker \
    -zkAddress pinot-zookeeper:2181
# 启动 Pinot Server,在守护进程中启动Pinot服务器并连接到Zookeeper。下面的命令需要一个16GB的内存容器。如果您的机器没有足够的资源,那么就调整- xms和xmx。
docker run --rm -ti \
    --network=pinot-demo \
    --name pinot-server \
    -p 8098:8098 \
    -e JAVA_OPTS="-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx16G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-server.log" \
    -d ${PINOT_IMAGE} StartServer \
    -zkAddress pinot-zookeeper:2181
# 启动 Kafka,你也可以选择启动Kafka来设置实时流。这会在端口9092上打开Kafka代理。
docker run --rm -ti \
    --network pinot-demo --name=kafka \
    -e KAFKA_ZOOKEEPER_CONNECT=pinot-zookeeper:2181/kafka \
    -e KAFKA_BROKER_ID=0 \
    -e KAFKA_ADVERTISED_HOST_NAME=kafka \
    -p 9092:9092 \
    -d bitnami/kafka:latest
# 查看运行容器
docker container ls -a

Docker Compose

创建docker-compose.yml文件内容如下

version: '3.7'
services:
  pinot-zookeeper:
    image: zookeeper:3.5.6
    container_name: pinot-zookeeper
    ports:
      - "2181:2181"
    environment:
      ZOOKEEPER_CLIENT_PORT: 2181
      ZOOKEEPER_TICK_TIME: 2000
  pinot-controller:
    image: apachepinot/pinot:0.12.1
    command: "StartController -zkAddress pinot-zookeeper:2181"
    container_name: pinot-controller
    restart: unless-stopped
    ports:
      - "9000:9000"
    environment:
      JAVA_OPTS: "-Dplugins.dir=/opt/pinot/plugins -Xms1G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-controller.log"
    depends_on:
      - pinot-zookeeper
  pinot-broker:
    image: apachepinot/pinot:0.12.1
    command: "StartBroker -zkAddress pinot-zookeeper:2181"
    restart: unless-stopped
    container_name: "pinot-broker"
    ports:
      - "8099:8099"
    environment:
      JAVA_OPTS: "-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-broker.log"
    depends_on:
      - pinot-controller
  pinot-server:
    image: apachepinot/pinot:0.12.1
    command: "StartServer -zkAddress pinot-zookeeper:2181"
    restart: unless-stopped
    container_name: "pinot-server"
    ports:
      - "8098:8098"
    environment:
      JAVA_OPTS: "-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx16G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-server.log"
    depends_on:
      - pinot-broker

运行docker-compose命令启动所有组件

docker-compose --project-name pinot-demo up

访问9000端口管理端点,http://mypinot:9000/

image-20230414143047105

实操

批导入数据

  • 准备数据
# 创建数据目录mkdir -p /tmp/pinot-quick-start/rawdata# 支持的文件格式有CSV、JSON、AVRO、PARQUET、THRIFT、ORC。创建一个/tmp/pinot-quick-start/rawdata/transcript.csv文件,内容如下studentID,firstName,lastName,gender,subject,score,timestampInEpoch200,Lucy,Smith,Female,Maths,3.8,1570863600000200,Lucy,Smith,Female,English,3.5,1571036400000201,Bob,King,Male,Maths,3.2,1571900400000202,Nick,Young,Male,Physics,3.6,1572418800000
  • 创建Schema:模式用于定义Pinot表的列和数据类型。模式的详细概述可以在schema中找到。简单地说,将列分为3种类型
列类型 描述
维度列 通常用于过滤器和分组by,用于对数据进行切片和切块
度量列 通常用于聚合,表示定量数据
时间 可选列,表示与每行关联的时间戳

例如,在上面数据中,studententid、firstName、lastName、gender、subject列是维度列,score列是度量列,timestampInEpoch是时间列。确定了维度、指标和时间列,使用下面的参考为数据创建一个schema,创建/tmp/pinot-quick-start/transcript-schema.json

{  "schemaName": "transcript",  "dimensionFieldSpecs": [    {      "name": "studentID",      "dataType": "INT"    },    {      "name": "firstName",      "dataType": "STRING"    },    {      "name": "lastName",      "dataType": "STRING"    },    {      "name": "gender",      "dataType": "STRING"    },    {      "name": "subject",      "dataType": "STRING"    }  ],  "metricFieldSpecs": [    {      "name": "score",      "dataType": "FLOAT"    }  ],  "dateTimeFieldSpecs": [{    "name": "timestampInEpoch",    "dataType": "LONG",    "format" : "1:MILLISECONDS:EPOCH",    "granularity": "1:MILLISECONDS"  }]}
  • 创建表配置:表配置用于定义与Pinot表相关的配置。该表的详细概述可以在表中找到。下面是上面CSV数据文件的表配置,创建表配置文件/tmp/pinot-quick-start/transcript-table-offline.json
{  "tableName": "transcript",  "segmentsConfig" : {    "timeColumnName": "timestampInEpoch",    "timeType": "MILLISECONDS",    "replication" : "1",    "schemaName" : "transcript"  },  "tableIndexConfig" : {    "invertedIndexColumns" : [],    "loadMode"  : "MMAP"  },  "tenants" : {    "broker":"DefaultTenant",    "server":"DefaultTenant"  },  "tableType":"OFFLINE",  "metadata": {}}
  • 上传表配置和Schema
# 前面是通过docker网络创建,确保可以访问controllerHost(manual-pinot-controller为可以访问主机名、容器、IP)和controllerPort端口即可docker run --rm -ti \    --network=pinot-demo \    -v /tmp/pinot-quick-start:/tmp/pinot-quick-start \    --name pinot-batch-table-creation \    apachepinot/pinot:0.12.1 AddTable \    -schemaFile /tmp/pinot-quick-start/transcript-schema.json \    -tableConfigFile /tmp/pinot-quick-start/transcript-table-offline.json \    -controllerHost manual-pinot-controller \    -controllerPort 9000 -exec  

可以通过检查Rest API中的表配置和模式,以确保它已成功上传。

image-20230414172132729

  • 创建段:Pinot表的数据存储为Pinot段。段的详细概述可以在段中找到。为了生成一个段,首先需要创建一个作业规范yaml文件。JobSpec yaml文件包含有关数据格式、输入数据位置和pinot集群坐标的所有信息。创建/tmp/pinot-quick-start/docker-job-spec.yml文件,内容如下
executionFrameworkSpec:  name: 'standalone'  segmentGenerationJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentGenerationJobRunner'  segmentTarPushJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentTarPushJobRunner'  segmentUriPushJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentUriPushJobRunner'jobType: SegmentCreationAndTarPushinputDirURI: '/tmp/pinot-quick-start/rawdata/'includeFileNamePattern: 'glob:**/*.csv'outputDirURI: '/tmp/pinot-quick-start/segments/'overwriteOutput: truepinotFSSpecs:  - scheme: file    className: org.apache.pinot.spi.filesystem.LocalPinotFSrecordReaderSpec:  dataFormat: 'csv'  className: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReader'  configClassName: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReaderConfig'tableSpec:  tableName: 'transcript'  schemaURI: 'http://manual-pinot-controller:9000/tables/transcript/schema'  tableConfigURI: 'http://manual-pinot-controller:9000/tables/transcript'pinotClusterSpecs:  - controllerURI: 'http://manual-pinot-controller:9000'

使用以下命令生成一个段并上传

docker run --rm -ti \    --network=pinot-demo \    -v /tmp/pinot-quick-start:/tmp/pinot-quick-start \    --name pinot-data-ingestion-job \    apachepinot/pinot:0.12.1 LaunchDataIngestionJob \    -jobSpecFile /tmp/pinot-quick-start/docker-job-spec.yml

流式导入数据

  • 创建Kafka和主题
# 首先,需要设置一个流。Pinot为Kafka提供了开箱即用的实时摄取支持。在本地设置一个演示Kafka集群,并创建一个示例主题转录主题docker run --rm -ti \    --network pinot-demo --name=kafka \    -e KAFKA_ZOOKEEPER_CONNECT=pinot-zookeeper:2181/kafka \    -e ALLOW_PLAINTEXT_LISTENER=yes \    -e KAFKA_BROKER_ID=0 \    -e KAFKA_ADVERTISED_HOST_NAME=kafka \    -p 9092:9092 \    -d bitnami/kafka:latest          # 创建一个Kafka主题docker exec \  -t kafka \  /opt/bitnami/kafka/bin/kafka-topics.sh \  --bootstrap-server kafka:9092 \  --partitions=1 --replication-factor=1 \  --create --topic transcript-topic  

image-20230414180923419

  • 创建表配置,创建/tmp/pinot-quick-start/transcript-table-realtime.json文件,内容如下
{  "tableName": "transcript",  "tableType": "REALTIME",  "segmentsConfig": {    "timeColumnName": "timestampInEpoch",    "timeType": "MILLISECONDS",    "schemaName": "transcript",    "replicasPerPartition": "1"  },  "tenants": {},  "tableIndexConfig": {    "loadMode": "MMAP",    "streamConfigs": {      "streamType": "kafka",      "stream.kafka.consumer.type": "lowlevel",      "stream.kafka.topic.name": "transcript-topic",      "stream.kafka.decoder.class.name": "org.apache.pinot.plugin.stream.kafka.KafkaJSONMessageDecoder",      "stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",      "stream.kafka.broker.list": "kafka:9092",      "realtime.segment.flush.threshold.rows": "0",      "realtime.segment.flush.threshold.time": "24h",      "realtime.segment.flush.threshold.segment.size": "50M",      "stream.kafka.consumer.prop.auto.offset.reset": "smallest"    }  },  "metadata": {    "customConfigs": {}  }}
  • 上传Schema和表配置
docker run \    --network=pinot-demo \    -v /tmp/pinot-quick-start:/tmp/pinot-quick-start \    --name pinot-streaming-table-creation \    apachepinot/pinot:0.12.1 AddTable \    -schemaFile /tmp/pinot-quick-start/transcript-schema.json \    -tableConfigFile /tmp/pinot-quick-start/transcript-table-realtime.json \    -controllerHost pinot-controller \    -controllerPort 9000 \    -exec

image-20230414181123882

  • 创建数据文件用于kafka生产者发送,/tmp/pinot-quick-start/rawdata/transcript.json,内容如下
{"studentID":205,"firstName":"Natalie","lastName":"Jones","gender":"Female","subject":"Maths","score":3.8,"timestampInEpoch":1571900400000}{"studentID":205,"firstName":"Natalie","lastName":"Jones","gender":"Female","subject":"History","score":3.5,"timestampInEpoch":1571900400000}{"studentID":207,"firstName":"Bob","lastName":"Lewis","gender":"Male","subject":"Maths","score":3.2,"timestampInEpoch":1571900400000}{"studentID":207,"firstName":"Bob","lastName":"Lewis","gender":"Male","subject":"Chemistry","score":3.6,"timestampInEpoch":1572418800000}{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"Geography","score":3.8,"timestampInEpoch":1572505200000}{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"English","score":3.5,"timestampInEpoch":1572505200000}{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"Maths","score":3.2,"timestampInEpoch":1572678000000}{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"Physics","score":3.6,"timestampInEpoch":1572678000000}{"studentID":211,"firstName":"John","lastName":"Doe","gender":"Male","subject":"Maths","score":3.8,"timestampInEpoch":1572678000000}{"studentID":211,"firstName":"John","lastName":"Doe","gender":"Male","subject":"English","score":3.5,"timestampInEpoch":1572678000000}{"studentID":211,"firstName":"John","lastName":"Doe","gender":"Male","subject":"History","score":3.2,"timestampInEpoch":1572854400000}{"studentID":212,"firstName":"Nick","lastName":"Young","gender":"Male","subject":"History","score":3.6,"timestampInEpoch":1572854400000}

将示例JSON推入Kafka主题,使用从Kafka下载的Kafka脚本

bin/kafka-console-producer.sh \    --bootstrap-server kafka:9092 \    --topic transcript-topic < /tmp/pinot-quick-start/rawdata/transcript.json

image-20230414182656547

你可能感兴趣的:(分布式,数据库,apache)