- 机器人系统导航里程计介绍
Xian-HHappy
机器人机器人人工智能算法里程计
一、引言在移动机器人的研究与应用领域,精准且实时地确定机器人的位置与姿态是实现其自主功能的关键。里程计作为达成这一目标的核心技术之一,在移动机器人的自主导航、路径规划、定位以及地图构建等诸多关键领域扮演着举足轻重的角色。随着机器人技术的持续演进,里程计已蜕变成为移动机器人实现SLAM(同步定位与地图构建)功能的基石。它通过对各类传感器所采集数据的精细计算与处理,运用增量式递推的策略,实时推算出机器
- AWS Lambda与RDS连接优化之旅
t0_54manong
编程问题解决手册aws云计算个人开发
在云计算的时代,AWSLambda与RDS的结合为开发者提供了高效且灵活的解决方案。然而,在实际应用中,我们常常会遇到一些性能瓶颈。本文将通过一个真实案例,探讨如何优化AWSLambda与RDS之间的连接,以提高API的响应速度。背景介绍最近,我们在AWS上部署了一个使用Dotnet6开发的API,它通过APIGateway暴露给外部,并连接到同VPC内的MySQLAuroraRDS数据库。部署前
- VINS-Mono 开源项目安装与使用指南
劳丽娓Fern
VINS-Mono开源项目安装与使用指南VINS-Mono项目地址:https://gitcode.com/gh_mirrors/vi/VINS-MonoVINS-Mono是一个专为单目视觉惯性系统设计的实时SLAM框架,旨在提供高精度的视觉惯性里程计。本指南将带你深入了解其目录结构、启动文件以及配置文件,帮助你快速上手并应用此项目。目录结构及介绍VINS-Mono的项目结构清晰地组织了不同的组件
- AWS 监控和管理服务 CloudWatch
wumingxiaoyao
BigDataaws大数据云计算CloudWatch日志监控
AWS监控和管理服务CloudWatch什么是CloudWatchCloudWatch工作原理CloudWatchlog收集方法通过AWSLambda发送日志到CloudWatchLogs使用CloudWatchLogsAgent发送日志通过AWSSDK或API将日志发送到CloudWatchLogs通过CloudWatchAgent将应用和系统日志发送到CloudWatchLogsCloudWa
- PHP云原生与Serverless架构深度实践
seopthonshentong
云原生phpserverless
在前六篇系列教程的基础上,本文将深入探讨PHP在云原生和Serverless环境下的高级应用,帮助开发者构建可扩展、高可用的现代化PHP应用。1.ServerlessPHP架构Bref与AWSLambda集成bash#安装Brefcomposerrequirebref/brefphpartisanvendor:publish--tag=serverless-configserverless.yml
- ROS的学习链接整理 (基于古月居)
辣椒炒月饼
学习机器人自动驾驶
机器人控制与仿真:http://wiki.ros.org/roscontrol机器人即使定位与地图建模:http://wiki.ros.org/gmappinghttp://wiki.ros.org/hectorslam机械臂相关学习:http://moveit.ros.org/斯坦福大学公开课———机器人学:https://www.bilibili.com/video/av4506104/交通大
- (02)Cartographer源码无死角解析-(72) 2D后端优化→OptimizationProblem2D-约束残差、landmark残差
江南才尽,年少无知!
机器人cartographerslam自动驾驶增强现实
讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下:(02)Cartographer源码无死角解析-(00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/127350885文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→
- cartographer官方指导文件说明---第3章 cartographer前端算法流程介绍
从小练武功
前端算法
cartographer官方指导文件说明第3章cartographer前端算法流程介绍3.1ScanMatch扫描匹配扫描匹配(ScanMatching)是Cartographer中实现局部SLAM的核心技术,它通过优化算法将当前激光扫描数据对齐到子图地图中。下面从计算过程、数学模型、参数配置等多个维度进行全面解析:3.1.1扫描匹配工作流程完整处理流程低置信度高置信度原始扫描数据运动畸变校正体素
- 3.3 里程计在SLAM中的应用
小慧1024
ROS1快速入门指南ros机器人linux
启动仿真环境roslaunchwpr_simulationwpb_corridor_hector.launch可视化结果如图所示在Riz建图中存在问题换一种方式建图roslaunchwpr_simulationwpb_corridor_gmapping.launch由于历程计的参与,地图被顺利建成
- SLAM面试笔记(5) — ROS面试
几度春风里
SLAM项目实战面试机器人ros自动驾驶
目录1ROS概述2ROS通信机制问题:服务通信概念问题:服务通信理论模型问题:参数服务器概念问题:参数服务器理论模型问题:参数服务器实现函数3ROS常用命令4常见面试题问题:roslaunch和rosrun区别?问题:什么是ROS?问题:ROS中的节点是什么?问题:ROS的消息通信机制是什么?问题:如何创建ROS的工作空间?问题:ROS中常用的机器人控制库有哪些?问题:ROS中如何进行机器人导航?
- nerf-slam论文复现
搬砖者(视觉算法工程师)
gitpython深度学习
nerf-slam实现三维重建详细的在我文档里面(有图片步骤)TableofContentsInstallDownloadDatasetsRunCitationLicenseAcknowledgmentsContactInstallClonerepowithsubmodules:gitclonehttps://github.com/ToniRV/NeRF-SLAM.git--recurse-sub
- STM32和树莓派的分工
⚙️修正版:典型硬件组合与通信流程(以移动机器人为例)1.硬件分工:大脑vs四肢角色硬件运行软件核心任务是否直接运行ROS决策大脑树莓派4B/JetsonNanoUbuntu+ROS运行SLAM、导航、视觉识别等复杂算法✅是实时四肢STM32F4FreeRTOS/裸机读取电机编码器、控制电机PWM❌否传感器/执行器电机、激光雷达、IMU-执行动作/采集数据-2.为什么需要STM32?树莓派无法直接
- 第5.4章 SLAM实战:使用std::chrono计算传感器消息时间戳
行知SLAM
机器人工程师带你入门SLAMunixc++自动驾驶人工智能
在机器人及自动驾驶定位中,传入的IMU和激光的消息都需要判断其数据的正确性,其中,主要会判断消息的开机时间和观测时间,其中开机时间主要通过调用chrono的函数计算,观测时间主要由GPS的时间来获得(GPS观测时间已由上篇文章总结GPS时间计算)。std::chrono是C++11引入的时间处理库,提供了高精度、类型安全且跨平台的时间计算功能。它主要包含三个核心概念:duration:表示时间间隔
- 《用Java 8新特性重构代码:让项目更简洁高效》
Tech_Jia_Hui
Java8新特性java重构开发语言
1.Lambda表达式:简化匿名内部类1.1传统方式vsLambda表达式1.2集合遍历对比1.3事件监听器简化2.StreamAPI:革命性的集合操作2.1基本Stream操作示例2.2数值流操作2.3分组和分区3.Optional:优雅处理null3.1基本Optional用法3.2Optional实践示例4.方法引用:更简洁的Lambda4.1四种方法引用类型4.2方法引用实践5.新的日期时
- 基于AWS无服务器架构的区块链API集成:零基础设施运维实践
AWS官方合作商
awsserverless架构web3区块链
引言区块链开发常面临节点部署、网络维护和扩展性挑战。本文将介绍如何通过AWS全托管服务构建高可用的区块链API层,无需自建节点、无需管理服务器,实现快速接入主流区块链网络(如以太坊、比特币),并保证企业级安全性与扩展性。graphLRA[前端应用]-->B[AmazonAPIGateway]B-->C[AWSLambda]C-->D[AmazonManagedBlockchain]C-->E[Bl
- 【SLAM】基于拓展卡尔曼滤波实现激光雷达传感器和角点提取的机器人定位附matlab代码
matlab科研社
机器人matlab数据结构
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍自主移动机器人定位是机器人学研究的核心问题之一。本文探讨了基于拓展卡尔曼滤波(EKF)融合激光雷达传感器数据和角点提取技术实现机器人定位的方法。通过深入分析激光雷达传感器的工
- 【ROS2】slam_toolbox建图详解
郭老二
ROSROS2SLAM
【ROS】郭老二博文之:ROS目录1、简介1)安装sudoaptinstallros-$ROS_DISTRO-slam-toolbox2)源码https://github.com/SteveMacenski/slam_toolbox3)官网https://joss.theoj.org/papers/10.21105/joss.027832、启动2.1启动slam_toolboxslam_toolb
- Python中日志输出配置
亚林瓜子
python开发语言logawslambdacloudwatchexception
问题在AWSlambdaPython中怎么样打印日志?Pythonimportlogginglogging.basicConfig()logging.getLogger("sqlalchemy.engine").setLevel(logging.INFO)logger=logging.getLogger()logger.setLevel(logging.INFO)上面是全局配置主要是如下配置:lo
- 视觉slam--框架
猿饵块
人工智能
视觉里程计的框架传感器VO--frontendVO的缺点后端--backend后端对什么数据进行优化利用什么数据进行优化的后端是怎么进行优化的回环检测建图建图是指构建地图的过程。构建的地图是点云地图还是什么信息的地图?建图并没有一个固定的形式和算法,地图的构建形式不是固定的,需要视SLAM的应用需求而定。
- 视觉slam十四讲实践部分记录——ch2、ch3
kikikidult
slam学习slamc++笔记
ch2一、使用g++编译.cpp为可执行文件并运行(P30)g++helloSLAM.cpp./a.out运行二、使用cmake编译mkdirbuildcdbuildcmake..makeCMakeCache.txt文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的CMakeCache.txt文件,或者在构建过程中仍然引用了旧的路径。我们需要彻底清理并重新开始。详细解决步骤步骤1:彻底清理源
- 【2D与3D SLAM中的扫描匹配算法全面解析】
Unpredictable222
SLAM算法自动驾驶自主导航算法opencvpclSLAMICPNDT
引言扫描匹配(ScanMatching)是同步定位与地图构建(SLAM)系统中的核心组件,它通过对齐连续的传感器观测数据来估计机器人的运动。本文将深入探讨2D和3DSLAM中的各种扫描匹配算法,包括数学原理、实现细节以及实际应用中的性能对比,特别关注激光雷达SLAM中的典型方法。一、扫描匹配数学基础与核心原理1.1刚体变换的数学表示扫描匹配的核心是求解刚体变换,在2D和3D空间中有不同的数学表示:
- cv::FileStorage用法
Feliz Da Vida
c++c++开发语言opencv
cv::FileStorage是OpenCV中的一个类,用于读取和写入结构化数据(如YAML、XML、JSON)。它非常适合保存和加载诸如:相机内参(K、D)位姿(R、T)IMU数据配置参数向量、矩阵、图像、列表等常见用途保存相机标定参数(标定后得到的.yml文件)配置文件读写(如SLAM、AR、CV项目)记录检测结果或轨迹数据使用示例✅1.写入YAML文件#includeusingnamespa
- 《视觉SLAM十四讲》自用笔记 第二讲:SLAM系统概述
BandieraRosa
slam笔记
在rm队伍里作为算法组梯队队员度过了一个赛季,为了促进和负责其他工作的算法组成员的交流,我决定在接下来的半个学期里(可能更快)读完这本书,并将其中的部分理论应用于我自制的雷达导航小车上。以下为第二讲的部分笔记:第二讲SLAM系统概述2.0目标1.理解一个视觉SLAM框架由哪几个模块组成,各模块的任务是什么。2.搭建编程环境,为开发和实验做准备2.1相机单目相机:只使用一个摄像头。无法通过单张照片获
- 【深度学习新浪潮】如何入门三维重建?
小米玄戒Andrew
深度学习新浪潮图像处理基石深度学习人工智能图像处理计算机视觉python视觉几何opencv
入门三维重建算法技术需要结合数学基础、计算机视觉理论、编程实践和项目经验,以下是系统的学习路径和建议:一、基础知识储备1.数学基础线性代数:矩阵运算、向量空间、特征分解(用于相机矩阵、变换矩阵推导)。几何基础:三维几何(点、线、面的表示)、射影几何(单应矩阵、本质矩阵、基础矩阵)、李群与李代数(SLAM中的位姿优化)。概率与统计:贝叶斯估计、概率图模型(SLAM中的状态估计)、随机过程(滤波算法如
- Levenberg-Marquardt算法详解和C++代码示例
点云SLAM
算法算法非线性最小二乘问题高斯-牛顿法和梯度下降法LM算法数值优化计算机视觉SLAM后端优化
Levenberg-Marquardt(LM)算法是非线性最小二乘问题中常用的一种优化算法,它融合了高斯-牛顿法和梯度下降法的优点,在数值计算与SLAM、图像配准、机器学习等领域中应用广泛。一、Levenberg-Marquardt算法基本原理1.1问题定义我们希望最小化一个非线性残差平方和目标函数:minx f(x)=12∑i=1mri(x)2=12∥r(x)∥2\min_{\mathbf{x
- 基于Serverless架构的搜索引擎爬虫实现方案
搜索引擎技术
搜索引擎实战serverless架构搜索引擎ai
基于Serverless架构的搜索引擎爬虫实现方案关键词:Serverless架构、搜索引擎爬虫、无服务器计算、分布式爬虫、AWSLambda、事件驱动架构、网页抓取摘要:本文深入探讨了如何利用Serverless架构实现高效、可扩展的搜索引擎爬虫系统。我们将从传统爬虫的局限性出发,分析Serverless架构的优势,详细讲解基于事件驱动的爬虫设计原理,并提供完整的实现方案和代码示例。文章将覆盖核
- 推荐文章:Lambda Serverless Search - 构建低成本高效全文搜索引擎
赵鹰伟Meadow
推荐文章:LambdaServerlessSearch-构建低成本高效全文搜索引擎Lambda-Serverless-SearchUseAWSLambdatoperformfree-textsearchondocuments-WithSAMTemplate项目地址:https://gitcode.com/gh_mirrors/la/Lambda-Serverless-Search在当今快速发展的云
- 自动驾驶转具身智能的切入点有哪些?
自动驾驶之心
自动驾驶人工智能机器学习
这几天很多同学后台私信我们,自动驾驶如何转具身智能?会不会有比较大的gap。从算法维度上看,具身智能领域基本延续了机器人和自驾的一些算法,比如SLAM、规划控制、模型训练与微调方式、数据生成方式、大模型。当然也有很多具体的任务不太一样,比如数据采集方式、重执行硬件与结构。我们也创办了一个具身智能全栈学习社区:具身智能之心,平时分享了很多具身智能相关的算法、数据采集、软硬件方案等。主要方向涉及VLA
- 相机成像原理_键盘摄影(一)——相机成像基本元件
weixin_39620273
相机成像原理
写在前面笔者在就读本科期间,开始接触计算机视觉领域,主要包括传统的图像处理,研究生期间开始了解深度学习,三维重建和SLAM(同时定位和建图)。可是对于其中使用到的最重要的传感器,相机,它的成像原理知之甚少,照片是怎么成像的?有幸在工作之余玩起了胶片相机,学习了一些摄影知识,在此和大家分享相关知识,欢迎友好地指正和勘误,轻喷。随着器件的发展,目前的相机类型丰富,我们可以从基本的元件讲起,主要涉及到胶
- 【视觉SLAM基础(二):特征点提取与匹配】
Unpredictable222
SLAM算法算法自动驾驶ubuntuc++笔记opencv
前言在视觉SLAM中,特征点是连接连续图像帧的桥梁,是视觉里程计的核心。本文将详细介绍特征点的提取与匹配方法,以及如何利用这些特征点估计相机运动。原理部分只是简单介绍,详细的介绍大家可以去看高翔老师的《视觉SLAM十四讲》。1.特征点提取1.1特征点基本概念一个好的图像特征应该具有:可重复性:在不同图像中能被重复检测到可区分性:不同特征有显著区别高效性:计算复杂度低局部性:对遮挡、光照变化等鲁棒1
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt