iOS开发之runtime(8):清除windows相关逻辑

logo

本系列博客是本人的源码阅读笔记,如果有 iOS 开发者在看 runtime 的,欢迎大家多多交流。为了方便讨论,本人新建了一个微信群(iOS技术讨论群),想要加入的,请添加本人微信:zhujinhui207407,【加我前请备注:ios 】,本人博客http://www.kyson.cn 也在不停的更新中,欢迎一起讨论

本文完整版详见笔者小专栏:https://xiaozhuanlan.com/runtime

背景

全局搜索TARGET_OS_WIN32可以看到有很多相关代码。

搜索TARGET_OS_WIN32结果

不言而喻,TARGET_OS_WIN32的意思是目标系统是不是在windows32上。那么TARGET_OS_WIN32究竟是什么,知道这个宏对我们阅读runtime源代码有什么帮助,本文笔者将带大家分析一下。

分析

点击runtime中的任意一个TARGET_OS_WIN32,进入其定义

#define TARGET_OS_WIN32             0

该宏位于中:

#if defined(__GNUC__) && ( defined(__APPLE_CPP__) || defined(__APPLE_CC__) || defined(__MACOS_CLASSIC__) )
    #define TARGET_OS_MAC               1
    #define TARGET_OS_WIN32             0
    #define TARGET_OS_UNIX              0
//......后面还有很多这里就不展示了
/*
 *   CodeWarrior compiler from Metrowerks/Motorola
 */
#elif defined(__MWERKS__)
    #define TARGET_OS_MAC               1
    #define TARGET_OS_WIN32             0
    #define TARGET_OS_UNIX              0
    #define TARGET_OS_EMBEDDED          0
//......后面还有很多这里就不展示了
#else
    #define TARGET_OS_MAC                1
    #define TARGET_OS_WIN32              0
    #define TARGET_OS_UNIX               0
    #define TARGET_OS_EMBEDDED           0

可以发现 不管走哪个分支

    #define TARGET_OS_WIN32              0

都是生效的,那么实际是不是这样呢,我们写个Demo来验证一下:

int main() {
    printf("TARGET_OS_MAC: %d\n",TARGET_OS_MAC);
    printf("TARGET_OS_WIN32: %d\n",TARGET_OS_WIN32);
}

可以看到log如下:

TARGET_OS_MAC: 1
TARGET_OS_WIN32: 0
Program ended with exit code: 0

完美验证了我们的想法。
接下来我们从代码角度来分析一下走的是哪个分支:
第一个分支:

#if defined(__GNUC__) && ( defined(__APPLE_CPP__) || defined(__APPLE_CC__) || defined(__MACOS_CLASSIC__) )

大概意思是判断

  1. 有没有定义__GNUC__,如果定义了,进入第二步
  2. 有没有定义__APPLE_CPP__或者__APPLE_CC__或者__MACOS_CLASSIC__
  3. 如果1,2都为真,则走该分支。
    因此我们可以写如下测试程序:
int main() {
    printf("__GNUC__: %d\n",__GNUC__);
//    printf("__APPLE_CPP__: %d\n",__APPLE_CPP__);
    printf("__APPLE_CC__: %d\n",__APPLE_CC__);
//    printf("__MACOS_CLASSIC__: %d\n",__MACOS_CLASSIC__);
//    printf("__APPLE_CPP__: %d\n",__APPLE_CPP__);
}

运行结果如下:

__GNUC__: 4
__APPLE_CC__: 6000
Program ended with exit code: 0

注释的部分是因为如果不注释,程序不能运行,间接也说明__APPLE_CPP____MACOS_CLASSIC____APPLE_CPP__是没有被定义的,只有__APPLE_CC__被定义的,也满足条件1、2了。

接下来我们详细讲述一下这几个宏:

__GNUC__

GCC官方文档 这里描述了__GNUC__的含义

These macros are defined by all GNU compilers that use the C preprocessor: C, C++, and Objective-C. Their values are the major version, minor version, and patch level of the compiler, as integer constants. For example, GCC 3.2.1 will define __GNUC__ to 3, __GNUC_MINOR__ to 2, and __GNUC_PATCHLEVEL__ to 1. They are defined only when the entire compiler is in use; if you invoke the preprocessor directly, they are not defined.

大致翻译一下:


本文完整版详见笔者小专栏:https://xiaozhuanlan.com/runtime


这里介绍了__APPLE_CC__的含义:

__APPLE_CC__ is also hard-coded to 6000 in the open-source clang compiler. So it seems appropriate to ask what the point of this macro is here.

作用

了解了TARGET_OS_WIN32这个宏永远是0,也就是说,有些代码永远被执行,对我们阅读runtime源码有很大帮助,这里举个例子:
在objc-os.mm文件中有如下代码:

可略过代码

把如下代码清除:


#include "objc-runtime-old.h"
#include "objcrt.h"

int monitor_init(monitor_t *c) 
{
    // fixme error checking
    HANDLE mutex = CreateMutex(NULL, TRUE, NULL);
    while (!c->mutex) {
        // fixme memory barrier here?
        if (0 == InterlockedCompareExchangePointer(&c->mutex, mutex, 0)) {
            // we win - finish construction
            c->waiters = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
            c->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
            InitializeCriticalSection(&c->waitCountLock);
            c->waitCount = 0;
            c->didBroadcast = 0;
            ReleaseMutex(c->mutex);    
            return 0;
        }
    }

    // someone else allocated the mutex and constructed the monitor
    ReleaseMutex(mutex);
    CloseHandle(mutex);
    return 0;
}

void mutex_init(mutex_t *m)
{
    while (!m->lock) {
        CRITICAL_SECTION *newlock = malloc(sizeof(CRITICAL_SECTION));
        InitializeCriticalSection(newlock);
        // fixme memory barrier here?
        if (0 == InterlockedCompareExchangePointer(&m->lock, newlock, 0)) {
            return;
        }
        // someone else installed their lock first
        DeleteCriticalSection(newlock);
        free(newlock);
    }
}


void recursive_mutex_init(recursive_mutex_t *m)
{
    // fixme error checking
    HANDLE newmutex = CreateMutex(NULL, FALSE, NULL);
    while (!m->mutex) {
        // fixme memory barrier here?
        if (0 == InterlockedCompareExchangePointer(&m->mutex, newmutex, 0)) {
            // we win
            return;
        }
    }
    
    // someone else installed their lock first
    CloseHandle(newmutex);
}


WINBOOL APIENTRY DllMain( HMODULE hModule,
                       DWORD  ul_reason_for_call,
                       LPVOID lpReserved
                     )
{
    switch (ul_reason_for_call) {
    case DLL_PROCESS_ATTACH:
        environ_init();
        tls_init();
        lock_init();
        sel_init(3500);  // old selector heuristic
        exception_init();
        break;

    case DLL_THREAD_ATTACH:
        break;

    case DLL_THREAD_DETACH:
    case DLL_PROCESS_DETACH:
        break;
    }
    return TRUE;
}

OBJC_EXPORT void *_objc_init_image(HMODULE image, const objc_sections *sects)
{
    header_info *hi = malloc(sizeof(header_info));
    size_t count, i;

    hi->mhdr = (const headerType *)image;
    hi->info = sects->iiStart;
    hi->allClassesRealized = NO;
    hi->modules = sects->modStart ? (Module *)((void **)sects->modStart+1) : 0;
    hi->moduleCount = (Module *)sects->modEnd - hi->modules;
    hi->protocols = sects->protoStart ? (struct old_protocol **)((void **)sects->protoStart+1) : 0;
    hi->protocolCount = (struct old_protocol **)sects->protoEnd - hi->protocols;
    hi->imageinfo = NULL;
    hi->imageinfoBytes = 0;
    // hi->imageinfo = sects->iiStart ? (uint8_t *)((void **)sects->iiStart+1) : 0;;
//     hi->imageinfoBytes = (uint8_t *)sects->iiEnd - hi->imageinfo;
    hi->selrefs = sects->selrefsStart ? (SEL *)((void **)sects->selrefsStart+1) : 0;
    hi->selrefCount = (SEL *)sects->selrefsEnd - hi->selrefs;
    hi->clsrefs = sects->clsrefsStart ? (Class *)((void **)sects->clsrefsStart+1) : 0;
    hi->clsrefCount = (Class *)sects->clsrefsEnd - hi->clsrefs;

    count = 0;
    for (i = 0; i < hi->moduleCount; i++) {
        if (hi->modules[i]) count++;
    }
    hi->mod_count = 0;
    hi->mod_ptr = 0;
    if (count > 0) {
        hi->mod_ptr = malloc(count * sizeof(struct objc_module));
        for (i = 0; i < hi->moduleCount; i++) {
            if (hi->modules[i]) memcpy(&hi->mod_ptr[hi->mod_count++], hi->modules[i], sizeof(struct objc_module));
        }
    }
    
    hi->moduleName = malloc(MAX_PATH * sizeof(TCHAR));
    GetModuleFileName((HMODULE)(hi->mhdr), hi->moduleName, MAX_PATH * sizeof(TCHAR));

    appendHeader(hi);

    if (PrintImages) {
        _objc_inform("IMAGES: loading image for %s%s%s%s\n", 
                     hi->fname, 
                     headerIsBundle(hi) ? " (bundle)" : "", 
                     hi->info->isReplacement() ? " (replacement)":"", 
                     hi->info->hasCategoryClassProperties() ? " (has class properties)":"");
    }

    // Count classes. Size various table based on the total.
    int total = 0;
    int unoptimizedTotal = 0;
    {
      if (_getObjc2ClassList(hi, &count)) {
        total += (int)count;
        if (!hi->getInSharedCache()) unoptimizedTotal += count;
      }
    }

    _read_images(&hi, 1, total, unoptimizedTotal);

    return hi;
}

OBJC_EXPORT void _objc_load_image(HMODULE image, header_info *hinfo)
{
    prepare_load_methods(hinfo);
    call_load_methods();
}

OBJC_EXPORT void _objc_unload_image(HMODULE image, header_info *hinfo)
{
    _objc_fatal("image unload not supported");
}

删掉以后可以更加专注我们的代码如下:


删掉代码后

怎么样,是不是感觉源代码更清爽了?

广告

我的首款个人开发的APP壁纸宝贝上线了,欢迎大家下载。

壁纸宝贝

你可能感兴趣的:(iOS开发之runtime(8):清除windows相关逻辑)