德鲁德模型:价电子游离于特定原子周围,弥散于整个晶体中,形成“自由电子气”。
The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials (especially metals). The model, which is an application of kinetic theory, assumes that the microscopic behavior of electrons in a solid may be treated classically and looks much like a pinball machine, with a sea of constantly jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions.
Assumption of the electron gas:
在德鲁德模型中,存在电场时,电子每两次碰撞之间都会获得电场加速,从而形成漂移速度 v d v_d vd,且漂移速度远小于电子热运动的速度 v d ≪ v R M S = 3 k B T m v_d \ll v_{RMS} = \sqrt{\frac{3k_BT}{m}} vd≪vRMS=m3kBT
利用德鲁德模型能够成功解释:
德鲁德模型存在的问题:
Despite the shortcomings of Drude theory, it nonetheless was the only theory of metallic conductivity for a quarter of a century (until the Sommerfeld theory improved it), and it remains quite useful today.
索末菲保留了德鲁德的自由电子气假设(前两个),但是索末菲去除了“碰撞”的概念,引入量子统计的理论(费米-狄拉克分布 Fermi-Dirac Distribution)。
1D Infinite Potential Well
( − ℏ 2 2 m d 2 d x 2 + U ( x ) ) ψ ( x ) = E ψ ( x ) \left( -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + U(x) \right ) \psi (x) = E \psi(x) (−2mℏ2dx2d2+U(x))ψ(x)=Eψ(x)
k = n π L , n = 1 , 2 , 3 , … k = n \frac{\pi}{L}, \ \ n=1,2,3,\dots k=nLπ, n=1,2,3,…
3D Infinite Potential Well
− ℏ 2 2 m ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 ) ψ ( x , y , z ) = E ψ ( x , y , z ) -\frac{\hbar ^2}{2m}\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi(x,y,z) = E \psi (x,y,z) −2mℏ2(∂x2∂2+∂y2∂2+∂z2∂2)ψ(x,y,z)=Eψ(x,y,z)
ψ ( x , y , z ) = ψ ( x ) ψ ( y ) ψ ( z ) \psi(x,y,z) = \psi(x) \psi(y) \psi(z) ψ(x,y,z)=ψ(x)ψ(y)ψ(z)
∵ E = ℏ 2 k 2 2 m , k ⃗ = k x i ⃗ + k y j ⃗ + k z l ⃗ \because E = \frac{\hbar ^2 k^2}{2m}, \ \ \vec k = k_x \vec i + k_y \vec j + k_z \vec l ∵E=2mℏ2k2, k=kxi+kyj+kzl
∴ E = ℏ 2 2 m ( k x 2 + k y 2 + k z 2 ) \therefore E = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2) ∴E=2mℏ2(kx2+ky2+kz2)
F l = α l ω l = 1 e ( α + β E l ) + 1 = 1 e ( E l − μ ) / k B T + 1 = 1 e ( E l − E F ) / k B T + 1 F_l = \frac{\alpha _l}{\omega _ l} = \frac{1}{e^{(\alpha + \beta E_l)} + 1} = \frac{1}{e^{(E_l - \mu)/k_B T} + 1} = \frac{1}{e^{(E_l - E_F)/k_B T} + 1} Fl=ωlαl=e(α+βEl)+11=e(El−μ)/kBT+11=e(El−EF)/kBT+11
Pauli’s Exclusion Principle:两个费米子不能处于同一量子态。
考虑自旋,一个能级对应有f组量子数,即有f重简并,这一个能级可以放2f个电子。
费米能级:在绝对零度时,一个费米子具有的最高能量。
The Fermi energy : the highest energy a fermion can take at absolute zero temperature.
假想把所有的费米子从量子态上移开,之后再把这些费米子按照一定的规则填充在各个可供占据的能量态上,并且这种填充过程中每个费米子都占据最低的可供占据的量子态。最后一个费米子占据的量子态即可粗略地认为是费米能级。
CFE model predicts: C V = 3 2 R C_V=\frac{3}{2}R CV=23R
experiments show: C V = 1 0 − 4 R T C_V = 10^{-4} RT CV=10−4RT
经典自由电子模型认为,所有电子都会对热容有贡献;量子力学认为,只有费米能级附近的电子才有可能脱离原子,具有导电特性,因为高能级被占据导致低能级电子无法跃迁。
The Fermi–Dirac distribution at zero temperature (solid line) constitutes a step function. For T > 0 (dashed line), broadening appears in a region of width k B T k_B T kBT around the Fermi edge located at ε = ε F = k B T F . ε = ε_F = k_B T_F. ε=εF=kBTF. If the distance of the edge from the origin is much larger than the area of broadening, the distribution function still displays the characteristic step-like behavior. Clearly, this picture is valid for the dimensionless parameter T / T F T/T_F T/TF being small.
视频讲解:费米能和态密度
KaTeX parse error: Undefined control sequence: \k at position 20: …= \frac{(\hbar \̲k̲_F)^2}{2m}
n u m b e r o f k : V F ⋅ ρ ( k ) = ( 4 π k F 3 3 ) ( V 8 π 3 ) = k F 3 6 π 2 V number \ of \ k: \ V_F \cdot \rho(k) = \left(\frac{4\pi k_F^3}{3} \right) \left( \frac{V}{8\pi^3} \right) = \frac{k_F^3}{6\pi^2}V number of k: VF⋅ρ(k)=(34πkF3)(8π3V)=6π2kF3V
where N is the total number of electrons, n=N/V is the total number of electrons per unit volume in the alloy, m is the effective mass, ħ is the reduced Plank’s constant
Fermi temperature T F T_F TF: T F = E F k B T_F = \frac{E_F}{k_B} TF=kBEF
费米能级对应的费米球的半径是费米半径,对应的费米面是电子占据能级和不占据的分界面。
Fermi sphere: 费米面
Fermi wave vector k F k_F kF: 费米波矢 the radius of the Fermi sphere
At T=0K, inside Fermi sphere, all orbits are occupied; outside Fermi sphere, all orbits are empty.
态密度:单位能量间隔电子能态(量子态或者轨道)的数量。
DOS: the number of electronic energy states (orbits) per unit energy.
g ( E ) = d Z d E g(E) = \frac{dZ}{dE} g(E)=dEdZ
In crystal dynamics, the density of states g(ω) is defined as the number of oscillators (or k) per unit frequency interval.
Each k state represents two possible electron states: (考虑自旋,一个k态对应两个可能的电子能量态)
one for spin up, the other for spin down, thus the total number of electronic states in a sphere of diameter k is: Z ( E ) = 2 ⋅ ρ ( k ) ⋅ 4 3 π k 3 = V k 3 3 π 2 Z(E) = 2\cdot \rho(\mathbf{k}) \cdot \frac{4}{3} \pi k^3 = \frac{Vk^3}{3\pi^2} Z(E)=2⋅ρ(k)⋅34πk3=3π2Vk3
consider: E = ℏ 2 k 2 2 m E = \frac{\hbar ^2 k^2}{2m} E=2mℏ2k2
g ( E ) = d Z d E = d Z d k ⋅ d k d E g(E) = \frac{dZ}{dE} = \frac{dZ}{dk}\cdot \frac{dk}{dE} g(E)=dEdZ=dkdZ⋅dEdk
∴ g ( E ) = V 2 π 2 ( 2 m ℏ 2 ) 3 / 2 \therefore g(E) = \frac{V}{2\pi^2} \left( \frac{2m}{\hbar^2}\right)^{3/2} ∴g(E)=2π2V(ℏ22m)3/2
g ( E ) = C ⋅ E 1 / 2 g(E) = C\cdot E^{1/2} g(E)=C⋅E1/2
{ 1 D : g ( E ) = C ⋅ E − 1 / 2 2 D : g ( E ) = m S π ℏ 2 3 D : g ( E ) = C ⋅ E − 1 / 2 \begin{cases} 1D: g(E) = C\cdot E^{-1/2} \\ 2D: g(E) = \frac{mS}{\pi \hbar^2} \\ 3D: g(E) = C\cdot E^{-1/2} \end{cases} ⎩ ⎨ ⎧1D:g(E)=C⋅E−1/22D:g(E)=πℏ2mS3D:g(E)=C⋅E−1/2
DOS g(E): the number of electronic energy states (orbits) per unit energy.
f(E): probability that an electronic energy state be occupied.
N(E):电子能量分布函数 Electron energy distribution function
N(E)dE = number of e- with energies between E and E+dE
g(E)f(E)dE = number of e- with energies between E and E+dE
N ( E ) = g ( E ) f ( E ) N(E) = g(E)f(E) N(E)=g(E)f(E)
total number of e-: N = ∈ 0 ∞ g ( E ) f ( E ) d E N = \in_0^{\infty} g(E)f(E)dE N=∈0∞g(E)f(E)dE
Total energy for electron gas:
T=0K :
E t = ∫ E d N = ∫ E ⋅ g ( E ) f ( E ) d E = ∫ 0 E F 0 C ⋅ E 1 / 2 d E = ∫ 0 E F 0 C E 3 / 2 d E = 2 C 5 ( E F 0 ) 5 / 2 E_t = \int EdN = \int E\cdot g(E)f(E)dE = \int_0^{E_F^0} C\cdot E^{1/2} dE = \int_0^{E_F^0} CE^{3/2}dE = \frac{2C}{5}(E_F^0)^{5/2} Et=∫EdN=∫E⋅g(E)f(E)dE=∫0EF0C⋅E1/2dE=∫0EF0CE3/2dE=52C(EF0)5/2
Average energy for free electrons:
E ˉ = E t N = 3 5 E F 0 \bar E = \frac{E_t}{N} = \frac{3}{5}E_F^0 Eˉ=NEt=53EF0
E t = 3 5 N E F 0 E_t = \frac{3}{5}NE_F^0 Et=53NEF0
At T=0K,the average energy of a free electron is 60% of the Femi energy.
T>0K :
E t = ∫ E ⋅ g ( E ) f ( E ) d E = C ∫ 0 ∞ E 3 / 2 1 e ( E − E F ) / k B T + 1 = … = 3 5 N E F 0 [ 1 + 5 12 π 2 ( k B T E F 0 ) 2 ] \begin{align} E_t &=\int E\cdot g(E)f(E)dE \\ &= C \int_0^{\infty} E^{3/2} \frac{1}{e^{(E-E_F)/k_B T}+1} \\ & =\dots \\ &= \frac{3}{5}N E_F^0 [1+ \frac{5}{12}\pi^2 (\frac{k_B T}{E_F^0})^2] \end{align} Et=∫E⋅g(E)f(E)dE=C∫0∞E3/2e(E−EF)/kBT+11=…=53NEF0[1+125π2(EF0kBT)2]
第一项是零点能,第二项由于分母的费米能很大所以可以忽略不计。
温度升高,热容涨幅不明显
E F = E F 0 [ 1 − 1 12 π 2 ( k B T E F 0 ) 2 ] = E F 0 [ 1 − π 2 12 ( T T F ) 2 ] ≈ E F 0 E_F = E_F^0 \left[1- \frac{1}{12}\pi^2 (\frac{k_B T}{E_F^0})^2 \right] = E_F^0 \left[1-\frac{\pi^2}{12}\left( \frac{T}{T_F}\right)^2 \right] \approx E_F^0 EF=EF0[1−121π2(EF0kBT)2]=EF0[1−12π2(TFT)2]≈EF0