ORCFile

一.读写代码
   =========================== 写入 ============================
    Configuration conf = new Configuration();
    conf.set("hive.exec.orc.default.row.index.stride","1000");

    TypeDescription schema = TypeDescription.createStruct()
            .addField("int_value", TypeDescription.createInt())
            .addField("long_value", TypeDescription.createLong())
            .addField("double_value", TypeDescription.createDouble())
            .addField("float_value", TypeDescription.createFloat())
            .addField("boolean_value", TypeDescription.createBoolean())
            .addField("string_value", TypeDescription.createString());

    Writer writer = OrcFile.createWriter(new Path("C:\\Users\\admin\\Desktop\\my-file.orc"),
            OrcFile.writerOptions(conf)
                    .setSchema(schema));

    VectorizedRowBatch batch = schema.createRowBatch();
    LongColumnVector intVector = (LongColumnVector) batch.cols[0];
    LongColumnVector longVector = (LongColumnVector) batch.cols[1];
    DoubleColumnVector doubleVector = (DoubleColumnVector) batch.cols[2];
    DoubleColumnVector floatColumnVector = (DoubleColumnVector) batch.cols[3];
    LongColumnVector booleanVector = (LongColumnVector) batch.cols[4];
    BytesColumnVector stringVector = (BytesColumnVector) batch.cols[5];


    for(int r=0; r < 100000; ++r) {
        int row = batch.size++;

        intVector.vector[row] = r;
        longVector.vector[row] = r;
        doubleVector.vector[row] = r;
        floatColumnVector.vector[row] = r;
        booleanVector.vector[row] =  r< 50000 ? 1 : 0;
        stringVector.setVal(row, UUID.randomUUID().toString().getBytes());

        if (batch.size == batch.getMaxSize()) {
            writer.addRowBatch(batch);
            batch.reset();
        }
    }
    if (batch.size != 0) {
        writer.addRowBatch(batch);
        batch.reset();
    }
    writer.close();

 ============================ 读取 ==============================
 Configuration conf = new Configuration();
    TypeDescription readSchema = TypeDescription.createStruct()
            .addField("int_value", TypeDescription.createInt())
            .addField("long_value", TypeDescription.createLong())
            .addField("double_value", TypeDescription.createDouble())
            .addField("float_value", TypeDescription.createFloat())
            .addField("boolean_value", TypeDescription.createBoolean())
            .addField("string_value", TypeDescription.createString());

    Reader reader = OrcFile.createReader(new Path("C:\\Users\\admin\\Desktop\\my-file.orc"),
            OrcFile.readerOptions(conf));

    //查询满足过滤条件的批次  默认是1w
    Reader.Options readerOptions = new Reader.Options(conf)
            .searchArgument(
                    SearchArgumentFactory
                            .newBuilder()
                            .between("long_value", PredicateLeaf.Type.LONG, 0L, 10L)
 //                                 .equals("long_value",PredicateLeaf.Type.LONG,10000L)
                            .build(),
                    new String[]{"int_value","long_value","double_value","float_value","boolean_value","string_value"}
            );

    String s = readerOptions.toString();
    System.out.println(s);

    RecordReader rows = reader.rows(readerOptions.schema(readSchema));

    VectorizedRowBatch batch = readSchema.createRowBatch();

    while (rows.nextBatch(batch)) {
        LongColumnVector intVector = (LongColumnVector) batch.cols[0];
        LongColumnVector longVector = (LongColumnVector) batch.cols[1];
        DoubleColumnVector doubleVector = (DoubleColumnVector) batch.cols[2];
        DoubleColumnVector floatVector = (DoubleColumnVector) batch.cols[3];
        LongColumnVector booleanVector = (LongColumnVector) batch.cols[4];
        BytesColumnVector stringVector = (BytesColumnVector) batch.cols[5];


        for (int r = 0; r < batch.size; r++) {
            int intValue = (int) intVector.vector[r];
            long longValue = longVector.vector[r];
            double doubleValue = doubleVector.vector[r];
            double floatValue = (float) floatVector.vector[r];
            boolean boolValue = booleanVector.vector[r] != 0;
            String stringValue = new String(stringVector.vector[r], stringVector.start[r], stringVector.length[r]);

            System.out.println(intValue + "," + longValue + ", " + doubleValue + ", " + floatValue + ", " + boolValue + ", " + stringValue);

        }
    }
    rows.close();
    System.out.println(reader.rows());
二 默认参数设置

参数名                           默认值                  说明
hive.exec.orc.default.stripe.size   256 * 1024 * 1024    stripe的默认大小
hive.exec.orc.default.block.size   256 * 1024 * 1024    orc文件在文件系统中的默认block大小,从hive-0.14开始
hive.exec.orc.dictionary.key.size.threshold  0.8         String类型字段使用字典编码的阈值
hive.exec.orc.default.row.index.stride    10000        stripe中的分组大小
hive.exec.orc.default.compress        ZLIB      ORC文件的默认压缩方式
hive.exec.orc.skip.corrupt.data        false       遇到错误数据的处理方式,false直接抛出异常,true则跳过该记录

三 其他

1.条件查询返回的是包含结果的所有stripes
2.stripes默认值是10000,最小是1000
3.如果查询结果中某一字符串类型的列数据完全相同,只会完整返回每个stripe组的第一条数据,其他row对应列数据为空

你可能感兴趣的:(ORCFile)