- 利用人工智能增强可读性:自动为文本添加标点符号
姚家湾
AI标点符号
在数字通信时代,文本的清晰度和可读性至关重要。无论是转录口语、处理原始文本数据还是改进用户生成的内容,标点符号在传达预期信息方面都起着至关重要的作用。但是,手动编辑文本以添加标点符号可能非常耗时且容易出错。这就是人工智能(AI)发挥作用的地方,它提供了一种强大的解决方案,可以自动将标点符号插入句子中。目前,利用大模型的能力,完全可以胜任添加标点符号的工作,不需要其它特别的处理程序。参考代码from
- 用 TensorFlow 搭建简单的手写数字识别模型
lozhyf
工作面试学习tensorflow人工智能python
一、引言手写数字识别是机器学习领域中一个经典且基础的问题,它在很多实际场景中都有广泛的应用,比如邮政系统中的邮件分拣、银行支票金额识别等。TensorFlow是一个强大的开源机器学习框架,由Google开发并维护,它提供了丰富的工具和接口,能帮助我们快速搭建和训练深度学习模型。在这篇博客中,我们将使用TensorFlow构建一个简单的神经网络模型,用于识别手写数字。二、环境准备在开始之前,你需要安
- 深入解析:Tableau在数据可视化中的高级应用
Echo_Wish
实战高阶大数据信息可视化数据分析数据挖掘
深入解析:Tableau在数据可视化中的高级应用引言在大数据时代,数据可视化已成为数据分析中不可或缺的一部分。作为一款广受欢迎的数据可视化工具,Tableau以其强大的功能和灵活性,赢得了众多数据分析师的青睐。然而,许多人在使用Tableau时,仅停留在基本操作层面,未能充分发挥其潜力。本文将深入探讨Tableau的高级应用,展示其在复杂数据分析中的强大能力,并以具体实例说明其实际应用效果。数据预
- DeepSeek使用中的问题及解决方案(部分)
WeiLai1112
DeepSeek人工智能
1.模型部署与配置问题问题1:环境依赖冲突现象:安装模型依赖库时出现版本不兼容(如Python、PyTorch版本冲突)。解决方案:使用虚拟环境(如conda或venv)隔离依赖。严格按照官方文档的版本要求安装依赖,例如:condacreate-ndeepseekpython=3.9condaactivatedeepseekpipinstalltorch==2.0.1transformers==4
- vue3 项目如何接入 AI 大模型
代码搬运媛
人工智能
以下是在Vue3项目中接入AI大模型的一般步骤:准备工作确定要接入的AI模型,如OpenAI的gpt-3.5-turbo、科大讯飞的星火大模型等。选择AI模型及获取API密钥:注册对应AI平台的账号,进入账户设置页面找到“ViewAPIKeys”或类似选项,创建属于自己的API密钥,并妥善保存。创建Vue项目并安装依赖打开命令行,使用vuecreate项目名命令创建一个新的Vue项目,按照提示完成
- TensorFlow LiteRT 概览
姚家湾
tensorflow人工智能python
LiteRT(简称LiteRuntime,以前称为TensorFlowLite)是Google面向设备端AI的高性能运行时。您可以找到适用于各种机器学习/AI任务的LiteRT就绪模型,也可以使用AIEdge转换和优化工具将TensorFlow、PyTorch和JAX模型转换为TFLite格式并运行。主要特性针对设备端机器学习进行了优化:LiteRT解决了五项关键的ODML约束条件:延迟时间(无需
- 使用 Rebuff 进行Prompt Injection的检测和防护
scaFHIO
promptpython
技术背景介绍在AI应用领域,PromptInjection(PI)攻击是一种通过恶意输入操控AI模型行为的攻击方式。这可能导致严重的安全问题,比如数据泄露、执行未授权的操作等。因此,检测和防护PI攻击对保障AI系统安全至关重要。Rebuff是一个自硬化的PromptInjection检测器,通过多阶段防御机制来保护AI应用免受PI攻击。本文将介绍Rebuff的核心原理、代码实现及其在实际开发中的应
- Anaconda 配置镜像源
猿代码_xiao
pythonpytorchpython深度学习
Anaconda镜像使用帮助Anaconda是一个用于科学计算的Python发行版,支持Linux,Mac,Windows,包含了众多流行的科学计算、数据分析的Python包。Anaconda安装包可以到https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载。TUNA还提供了Anaconda仓库与第三方源(conda-forge、msys2
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- 使用Yuan 2.0与LangChain构建智能聊天应用:完整指南
scaFHIO
langchainpython
技术背景介绍Yuan2.0是IEIT系统开发的新一代基础大语言模型,包括Yuan2.0-102B、Yuan2.0-51B和Yuan2.0-2B三种版本。相比之前的Yuan1.0,Yuan2.0使用了更广泛的高质量预训练数据,并通过指令微调数据集增强了模型的语义理解、数学推理、编程知识等能力。为了方便开发者集成,Yuan2.0提供了兼容OpenAIAPI的服务接口。本文将介绍如何通过LangChai
- 使用LM Studio在WordPress基于大模型原创文章上稿进行SEO优化
Mr数据杨
Python自然语言技术wordpress大模型seo1024程序员节
在进行自动化文章生成与发布的流程中,首先需要确保基础配置的完善性和数据的准确性。通过手动设置分类和标签,文章能够在发布时被准确归类,从而提升SEO的效果。通过Excel表格的方式管理这些分类与标签,结合Python脚本,可以高效地实现自动化文章的生成和发布。该流程依赖于对WordPress数据库的操作,包括标签的批量导入、分类和标签的映射,以及通过AI生成内容的自动发布。全面的配置不仅节省了手动处
- uniapp邪门事件
岑梓铭
前端问题uni-app
很久之前在这篇《THREEJS在uni-app中使用(微信小程序)》:THREEJS在uni-app中使用(微信小程序)_uni-app_帶刺的小葡萄-华为开发者空间中学到了如何在uniapp的微信小程序里接入three.js的3d模型由于小程序自身很多不兼容原因,博主建议去用GitHub一个大佬改写的js库来引入适合小程序的three.js,于是我去照搬模仿,然后手动检查了一下,确实可以正常运行
- Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
UnknownBody
LLMDailyLLMcontext语言模型人工智能
本文是LLM系列文章,针对《LeaveNoContextBehind:EfficientInfiniteContextTransformerswithInfini-attention》的翻译。不让任何上下文掉队:无限关注的高效无限上下文Transformer摘要1引言2方法3实验4相关工作5结论摘要这项工作介绍了一种将基于Transformer的大型语言模型(LLM)扩展到具有有限内存和计算的无限
- 大厂面试真题-说说DDD中的防腐层以及它和四层架构的关系
鱼跃鹰飞
大厂真题DDD架构设计1024程序员节职场和发展开发语言面试
DDD(领域驱动设计)中的防腐层(Anti-CorruptionLayer,ACL)是一种设计模式,旨在解决不同子系统或限界上下文间由于领域模型或接口不兼容而带来的集成问题。以下是对DDD防腐层的详细介绍,以及它与四层架构的关系:一、DDD防腐层定义:防腐层是一种在不同应用间转换的机制,通过引入一层适配层来隔离和转换不同系统间的交互。作用:隔离领域模型:保护自身领域模型免受其他领域模型代码的侵害。
- 使用Cohere进行文本生成: 从安装到实战
shuoac
python开发语言
Cohere是一家加拿大初创公司,提供自然语言处理模型,帮助企业提升人机交互体验。本文将详细介绍如何使用Cohere进行文本生成,包括环境配置、核心原理、代码演示和实际应用场景分析。1.技术背景介绍随着自然语言处理技术的快速发展,基于大模型的文本生成应用在各行各业中展现出了巨大的潜力。Cohere提供了高效、易用的API,使得开发者能够快速集成高质量的文本生成能力。本文将带你一步步实现这些功能。2
- KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
魔王阿卡纳兹
大模型知识札记语言模型人工智能自然语言处理
KTransformers通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度,具体体现在以下几个方面:内核级优化:KTransformers采用了高效的内核级优化技术,包括对Transformer模型中的关键操作进行优化。例如,通过使用Llama和Marlin等高效内核,显著提升了计算效率。通过IntelAMX指令集优化,KTransformers在CPU端实现了更高的
- 层次分析法(AHP, Analytic Hierarchy Process)
时代的狂
读书摘要笔记
层次分析法(AHP,AnalyticHierarchyProcess)是一种多层次、多因素的决策分析方法,用于解决复杂的决策问题。它通过将问题结构化,将决策目标分解为多个层次,并对不同的决策因素进行比较,进而得出各因素的相对重要性,并帮助决策者做出合理的决策。层次分析法的基本步骤建立层次结构模型首先将决策问题分解为多个层次,通常包括目标层、准则层(即影响决策的主要因素)、子准则层(即对准则进一步细
- Pytorch实现论文之利用多生成器来预防模式崩溃
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集人工智能python生成对抗网络机器学习pytorch深度学习计算机视觉
简介简介:一般来说,生成器相比判别器要完成的任务更加困难,前者需要完成数据概率密度的拟合,而后者只需要判别真伪,影响GAN性能的一个问题就是模式奔溃。而采用多生成器可以缓解这个问题。论文中主要设计了多生成器的架构和一个对于鉴别器的新损失设计来缓解这个问题。模型结构采用DCGAN的框架,原始损失基于WGAN-GP的设计理念。论文题目:StudyofPreventionofModeCollapsein
- HCIA网络层协议与IP编址
夏の橘
HCIA学习之路网络
摘要:网络层是OSI模型中的核心层级,负责实现跨网络的数据传输。本文深入解析HCIA认证要求的网络层协议(IP/ICMP/ARP)及IP编址技术,涵盖子网划分、NAT原理及数据转发流程,帮助读者掌握网络层关键技术。目录一、网络层协议核心功能二、核心协议解析1.IP协议(InternetProtocol)2.ICMP协议3.ARP协议三、IPv4编址技术详解1.地址结构与分类关键细节2.子网划分实践
- ZBrush:导出与导入ZBrush模型_2024-07-15_19-55-08.Tex
chenjj4003
游戏开发zbrush1024程序员节贴图substancepainter数码相机android
ZBrush:导出与导入ZBrush模型ZBrush模型导出基础了解ZBrush的导出格式ZBrush是一款强大的数字雕塑和绘画软件,它支持多种模型导出格式,以适应不同的下游应用需求。在ZBrush中,最常见的导出格式包括:OBJ:一种广泛支持的3D模型格式,可以包含顶点、面、纹理坐标和法线信息。STL:常用于3D打印,仅包含顶点和面信息,不支持纹理和颜色。FBX:支持动画和骨骼,是游戏和电影行业
- 深入浅出:CUDA是什么,如何利用它进行高效并行计算
码上飞扬
CUDA
在当今这个数据驱动的时代,计算能力的需求日益增加,特别是在深度学习、科学计算和图像处理等领域。为了满足这些需求,NVIDIA推出了CUDA(ComputeUnifiedDeviceArchitecture),这是一种并行计算平台和编程模型。本文将带你全面了解CUDA的基本概念、工作原理及其应用场景。一、什么是CUDA?CUDA(ComputeUnifiedDeviceArchitecture)是由
- 【深度学习】学习率调度策略
黑白交界
深度学习学习深度学习
什么是学习率可以理解为模型在每一次迭代中的模型更新调整的幅度,“学习”新信息的速度。学习率定义了模型权重(参数)在梯度下降或其他优化算法中的更新步伐。较大的学习率意味着在每次参数更新时,模型会进行更大幅度的调整,而较小的学习率则意味着细致的、渐进的调整。适当的学习率可以帮助模型跳出局部最优解。当使用较大的学习率时,模型有可能跨越一些小的局部最优,从而找到全局最优解,但也有可能错过全局最优。因此,在
- python panda下载_pandas python下载|Pandas for python v0.25.0官方版 v0.25.0官方版 - 哩咯下载站...
weixin_39647458
pythonpanda下载
Pandas是python的数据分析包,最初被作为金融数据分析工具而开发出来,提供pandas.whl包下载,有需要的赶快下载吧!软件介绍Pandas是python的一个数据分析包,最初由AQRCapitalManagement于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,属于PyData项目的一部分。Pandas最初被
- 使用LangChain与Clarifai模型进行交互
vaidfl
langchain交互python
在现代AI应用开发中,Clarifai提供了一个完整的AI生命周期管理平台,包括数据探索、数据标注、模型训练、评估和推理。本文将探讨如何使用LangChain库与Clarifai的模型进行交互。技术背景介绍Clarifai是一个全面的AI平台,专注于模型的构建和部署。要开始使用Clarifai,你需要一个账户和个人访问令牌(PAT)。确保先在Clarifai获取或创建你的PAT。核心原理解析通过L
- 深度学习模型中的知识蒸馏是如何工作的?
c++服务器开发
深度学习人工智能
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角
- 使用LangChain与AI21Jurassic模型进行交互
fgayif
langchain交互python
在本指南中,我们将探讨如何使用LangChain与AI21的Jurassic模型进行交互。为了使用Jamba模型,请使用ChatAI21对象。您可以在LangChain上查看AI21模型和工具的完整列表。环境准备首先,我们需要安装langchain-ai21库。!pipinstall-qUlangchain-ai21环境设置在开始之前,我们需要获取AI21的API密钥,并设置AI21_API_KE
- AnythingLLM 项目安装与配置指南
龙聪山Diane
AnythingLLM项目安装与配置指南anything-llm为开源和闭源的大型语言模型(LLMs)、嵌入器和向量数据库提供开源的ChatGPT体验。在一个应用中提供无限的文档、消息和并发用户,以及权限管理。项目地址:https://gitcode.com/gh_mirrors/an/anything-llm1.项目基础介绍和主要编程语言AnythingLLM是一个全栈应用程序,旨在帮助用户将任
- Ollama部署大模型并安装WebUi
m0_74823611
java
Ollama用于在本地运行和部署大型语言模型(LLMs)的工具,可以非常方便的部署本地大模型安装Linuxcurl-fsSLhttps://ollama.com/install.sh|sh我是ubuntu系统安装,其他系统可以看项目的开源地址有写GitHub-ollama/ollama:GetupandrunningwithLlama3,Mistral,Gemma,andotherlargelan
- 吐血整理!权重持久化方案优化,让你的模型性能飙升
盼达思文体科创
经验分享
吐血整理!权重持久化方案优化,让你的模型性能飙升引言你是否在做深度学习项目时,遭遇过模型训练结果无法有效保存,导致之前的努力付诸东流的痛苦?又或者在模型权重持久化时,发现保存和加载的速度极慢,严重影响项目进度?今天咱们就来好好聊聊权重持久化方案的优化,帮你解决这些让人头疼的问题!核心内容❗传统方案痛点:大多数人都踩过的坑在很多深度学习项目里,大家常用的权重持久化方案存在不少问题。比如说,使用普通的
- 吐血整理!训练时数据增强策略调整,让模型性能飙升
盼达思文体科创
经验分享
吐血整理!训练时数据增强策略调整,让模型性能飙升引言你是否遇到过模型训练效果不佳,明明投入了大量数据,可模型的准确率、泛化能力就是提不上去?其实啊,很多时候问题就出在数据增强策略上。不合理的数据增强方式,就像给运动员吃错了补药,不仅起不到提升效果,还可能适得其反。今天我就来和你好好聊聊训练时数据增强策略的调整,让你的模型也能“脱胎换骨”!核心内容策略选择误区:80%的人都会犯的错场景化描述:你满心
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi