torch.cat((A,B),dim=1)解析

官方说明torch.cat

引用自:Pytorch中的torch.cat()函数

torch.cat(tensors, dim=0, *, out=None) → Tensor
# 连接给定维数的给定序列的序列张量。所有张量要么具有相同的形状(除了连接维度),要么为空。

示例

输入:

import torch
a = torch.Tensor(2,3)   #  (2行,3列)
b = torch.Tensor(2,3)
print (a)
print (b)

输出:

tensor([[8.9082e-39, 1.0194e-38, 9.1837e-39],
        [8.4490e-39, 9.6429e-39, 8.4490e-39]])
tensor([[-2.0541e-05,  5.0727e-43, -2.0541e-05],
        [ 5.0727e-43, -2.1039e-05,  5.0727e-43]])

输入:

print(torch.cat([a,b], dim= 0))  
# 1. torch.cat((x,y),dim=0) :张量 X,Y按照列堆起来

输出:

tensor([[ 8.9082e-39,  1.0194e-38,  9.1837e-39],
        [ 8.4490e-39,  9.6429e-39,  8.4490e-39],
        [-2.0541e-05,  5.0727e-43, -2.0541e-05],
        [ 5.0727e-43, -2.1039e-05,  5.0727e-43]])

输入:

print(torch.cat([a,b], dim=-1))
# 2. torch.cat((x,y),dim=1) :张量 X,Y按照行并排起来

输出:

tensor([[ 8.9082e-39,  1.0194e-38,  9.1837e-39, -2.0541e-05,  5.0727e-43,
         -2.0541e-05],
        [ 8.4490e-39,  9.6429e-39,  8.4490e-39,  5.0727e-43, -2.1039e-05,
          5.0727e-43]])

总结:

torch.cat((x,y),dim=0) :张量 X,Y按照列堆起来
torch.cat((x,y),dim=1) :张量 X,Y按照行并排起来

你可能感兴趣的:(深度学习,pytorch,python)