- python ks值计算_风控模型中的K-S理解以及python实现
weixin_39747293
pythonks值计算
笔者在工作中计算单变量的ks值时,发现几个分布不同的变量好y计算的ks值相同,凭借统计直觉,发现一定存在问题,笔者从数据和计算ks代码两个方向进行排除。最后定位到计算使用stats.ks_2samp()函数计算ks值时,如果变量存在缺失值,计算得到ks值有误,下面笔者就来好好梳理一下ks值的前世今生。ks检验介绍笔者刚入门机器学习开始做的例子就是金融场景下风控模型。那时评价模型的好坏就用传统的机器
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 性能测试需求分析详解
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快1、客户方提出客户方能提出明确的性能需求,说明对方很重视性能测试,这样的企业一般是金融、电信、银行、医疗器械等;他们一般对系统的性能要求非常高,对性能也非常了解。提出需求也比较明确。曾经有一个银行项目,已经到最后的性能测试极端,因为数据库设计不合理,导致性能出现很大的问题,最终不得不把整合项目作废,对于这样的项目,其实从分析设计阶段就应该
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- 民生银行·企业文化与行业知识
weixin_44589682
企业文化业界资讯
民生银行·企业文化与行业知识介绍概况文化战略体系战略定位发展策略特色优势荣誉新闻20245.22民生银行首个光伏发电“绿色金融大楼”项目投用5.11SRP2024中国年会暨中国区年度奖项颁奖仪式4.8获准设立伦敦分行3.282023年年度报告3.18“绿色无限·碳索未来”CCER碳市场金融服务推广会3.18国际知名财经杂志《财资》(“TheAsset”)“TheAssetTripleASustai
- 随机近似算法:步长序列选择的理论与金融实践
随机近似算法:步长序列选择的理论与金融实践摘要随机近似算法作为统计学习与优化的核心工具,其收敛性与稳定性高度依赖步长序列的设计。本文系统阐述步长序列的理论约束与工程选择策略,并结合金融波动率估计场景,展示算法在动态系统参数估计中的实践价值。1.随机近似算法的数学框架随机近似算法通过随机样本的迭代更新逼近目标参数,其核心迭代式为:θn+1=θn+an(Yn−g(θn))\theta_{n+1}=\t
- Solidity学习 - 断言失败
本郡主是喵
#Solidity学习区块链Solidity
文章目录前言一、原理剖析(一)断言的作用(二)断言失败的影响(三)与require的区别二、案例分析(一)某去中心化金融(DeFi)借贷合约案例(二)某加密货币交易平台智能合约案例三、解决办法(一)正确区分assert和require的使用场景前言在Solidity智能合约开发领域,确保代码的稳健性和安全性是至关重要的。其中,断言失败漏洞是一个需要开发者高度警惕的问题,它可能会对智能合约的正常运行
- 合规型区块链RWA系统解决方案报告——机构资产数字化的终极武器
Ashlee_guweng22346
区块链需求分析架构pythoneclipsec#git
(跨境金融科技解决方案白皮书)一、直击机构客户四大痛点痛点传统方案缺陷我们的破局点✖️跨境资产流动性差结算周期30+天,摩擦成本超8%▶️7×24h全球实时交易(速度提升90%)✖️合规成本飙升KYC/AML人工审核占成本35%+▶️自动化合规引擎(成本降低50%)✖️资产透明度缺失多层中介导致权属不清▶️链上全生命周期溯源(100%防篡改)✖️新型资产配置难非标资产难分割、难定价▶️碎片化代币发
- AI+实时计算如何赋能金融系统?DolphinDB 在国泰君安期货年度中期策略会的演讲
6月25日,国泰君安期货2025年度中期策略会在上海顺利开幕。本次策略会以“观势明变,本固枝荣”为主题,特邀15位重量级行业嘉宾和52位明星分析师发表精彩观点,DolphinDB受邀出席会议并作主题演讲。实时计算如何赋能量化投研交易下午13:30分,AI投资主题分论坛正式启幕,DolphinDB创始人周小华博士在随后登台发言,带来了题为《AI+实时计算赋能量化金融》的精彩发言。演讲中,周小华博士首
- 稳定币技术全解:从货币锚定机制到区块链金融基础设施
Ashlee_guweng22346
游戏区块链金融架构人工智能自动化java
引言:稳定币的技术定位根据国际清算银行(BIS)2025年定义:稳定币是以法定资产或算法机制维持价值稳定的区块链代币,其本质是传统金融与加密技术的接口层。核心价值:解决加密货币波动性问题→成为DeFi生态的计价基准与结算工具第一章技术原理:稳定币如何实现“稳定”?1.1锚定机制的三类技术路径graphTBA[稳定币类型]-->B[法币储备型]A-->C[加密资产抵押型]A-->D[算法调控型]B-
- DeLorean联手Sui网络推出最新区块链订车,XBIT平台xaut今日价格行情飙升引热议
caijingshiye
区块链
币界网6月24日讯,全球豪华汽车领域迎来颠覆性变革!DeLorean汽车公司今日宣布,基于SuiNetwork打造的全球首个区块链汽车预订市场正式上线,用户可通过加密货币直接预订其旗舰电动跑车Alpha5,并在等待交付期间通过质押资产赚取收益。这一创新模式不仅解决了传统汽车预订的退款难、周期长等痛点,更将区块链技术的透明性与金融属性深度融合。受此消息刺激,去中心化交易所XBIT平台上的黄金稳定币x
- 解锁阿里云E-MapReduce:大数据处理的超能力秘籍
云资源服务商
阿里云云计算人工智能云原生
一、引言在数字化浪潮汹涌澎湃的当下,大数据已然成为推动各行业创新发展的核心驱动力。从电商平台精准的个性化推荐,到金融机构严密的风险评估,再到医疗领域高效的疾病预测,大数据的应用场景无处不在,深刻地改变着我们的生活与工作方式。在这片充满机遇与挑战的大数据领域中,阿里云E-MapReduce宛如一颗璀璨的明星,占据着举足轻重的地位。它凭借强大的大数据处理能力、卓越的性能表现以及丰富的功能特性,为企业和
- Python爬虫实战:用Tushare和Baostock爬取股票历史数据及K线图与技术指标计算
在金融数据分析和量化交易中,股票历史数据的获取是进行技术分析、回测和策略研究的第一步。传统上,投资者需要依赖付费数据服务,然而如今,借助Python强大的爬虫工具和开源数据接口,我们能够轻松地爬取免费的历史股票数据,并结合K线图与技术指标来进行深入分析。Tushare和Baostock是两个非常流行的开源金融数据接口。Tushare提供了丰富的国内外金融数据,特别是A股市场的历史数据和实时数据,而
- 稳定币独角兽:Circle
InnoLink_1024
区块链稳定币区块链
Circle公司背景分析CircleInternetFinancial(以下简称Circle)是一家成立于2013年的美国金融科技公司,总部位于波士顿,由JeremyAllaire和SeanNeville联合创立。公司最初专注于点对点加密货币支付和交易,后转型为全球领先的稳定币发行机构,其核心产品是与美元1:1挂钩的USDCoin(USDC),目前为全球第二大稳定币,仅次于Tether的USDT。
- 企业级知识库私有化部署:腾讯混元+云容器服务TKE实战
大熊计算机
#腾讯云语言模型
1.背景需求分析在金融、医疗等数据敏感行业,企业需要构建完全自主可控的知识库系统。本文以某证券机构智能投研系统为原型,演示如何基于腾讯混元大模型与TKE容器服务实现:千亿级参数模型的私有化部署金融领域垂直场景微调高并发低延迟推理服务全链路安全合规方案1.1典型技术挑战#性能基准测试数据(单位:QPS)|场景|裸机部署|容器化部署|优化后||--------------------|--------
- Web3前沿科技:开启数字资产交易新征程
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据web3科技ai
Web3前沿科技:开启数字资产交易新征程关键词:Web3、数字资产交易、区块链、智能合约、去中心化金融摘要:本文聚焦于Web3前沿科技在数字资产交易领域的应用与发展。详细阐述了Web3的核心概念、相关技术原理,包括区块链、智能合约等。通过具体的算法原理和Python代码示例,深入剖析了数字资产交易在Web3环境下的运行机制。同时,结合实际项目案例,讲解了开发环境搭建、代码实现与解读。探讨了Web3
- 【数据交易】全国数据交易所的发展现状
暴躁小师兄数据学院
数据治理区块链
全国数据交易所概述数据交易所是专门为数据资产(如数据集、数据产品)提供交易、流通和服务的平台,类似于传统金融交易所,但针对数据要素市场。在中国,随着数据被列为生产要素,国家积极推动数据交易所建设,以促进数据资源的高效配置和市场化流通。以下是中国主要的数据交易所及其现状。主要数据交易所列表上海数据交易所成立时间:2021年11月定位:中国首个国家级数据交易所,由上海市政府主导,旨在打造全球数据要素配
- 结构化数据增强的生成式算法案例:客户交易数据增强
python游乐园
数据深度学习大数据算法学习
1基础信息1.1案例背景这是一个用于增强结构化客户交易数据的生成式算法。这种类型的数据增强在金融、电子商务等领域非常有用,可以帮助解决数据不平衡问题或在小数据集上提高模型性能。1.2问题定义给定原始交易数据集D={x₁,x₂,...,xₙ},其中每条记录包含:交易金额交易时间客户年龄客户收入水平交易类别地理位置是否为欺诈交易(标签)目标:生成与原始数据分布相似但多样化的新样本,同时保持字段间的合理
- 流程管理系统技术选型避坑指南(含开源)
Alex艾力的IT数字空间
开源java网络中间件gitidevscode
一、开源流程引擎方案以下为基于BPMN2.0标准的开源方案,覆盖轻量级到企业级需求:引擎名称核心特点适用场景技术栈社区活跃度官网Camunda-完整BPMN/DMN/CMMN支持-可视化流程设计器-分布式架构支持高并发复杂业务流程(金融、制造业)Java/SpringBoot/微服务高camunda.comFlowable-Activiti分支,性能优化-支持云原生部署-与Spring生态深度集成
- 微信小程序和支付宝小程序的区别
马拉萨的春天
微信小程序的开发小程序微信小程序
谈到小程序,我们常知的就是微信小程序和支付宝小程序,然而这两个小程序有哪些区别呢?我们下面分析一下。微信小程序和支付宝小程序的核心区别在于生态定位、功能侧重和用户群体:微信依托社交生态,侧重社交分享与营销玩法;支付宝则围绕支付和金融服务,强调信用体系与电商场景。两者在流量规模、开发环境及适用行业上也有显著差异。生态定位与功能侧重微信小程序:基于微信社交生态,强于社交传播(如拼团、助力等营
- 三大行业代码合规刚需!Parasoft dotTEST一键达成PCI、HIPAA等标准
慧都小项
Parasoft软件测试工具静态代码分析C#/.NETPCIDSSHIPAAISO26262
在金融、医疗和汽车等高度监管的行业中,代码合规性不仅是一项法律要求,更是企业信誉和产品安全的基石。然而,传统的人工代码审查不仅耗时耗力,还容易遗漏关键漏洞,导致审计失败或安全风险。ParasoftdotTEST作为业界领先的C#/.NET静态代码分析工具,通过内置的PCIDSS、OWASP、CWE等合规规则库,帮助您的团队自动化检测代码风险,确保每一次提交都符合行业标准,让合规性审查从“被动应对”
- 银行卡三要素验证API:保障身份真实性的工具
tanshu-API喵喵君
身份认证API银行卡认证
在金融科技快速发展与政策支持的背景下,我国银行卡产业持续壮大。与此同时,伪卡盗刷、身份冒用等新型犯罪手段也不断涌现,手法日益隐蔽,给用户资金安全带来严峻挑战。为应对这些风险,探数API的银行卡三要素验证API通过输入银行卡号、持卡人姓名和身份证号码,快速判断三项信息是否一致,从而有效验证身份真实性,保障交易安全。一、什么是银行卡三要素验证?银行卡三要素验证是一种基于银行系统接口的身份核验服务,其核
- 合规视角下银行智能客服风险防控
AI 智能服务
智能客服人工智能AIGC数据库chatgpt
1.AI驱动金融变革的政策与技术背景政策导向:我国《新一代人工智能发展规划》明确提出发展智能金融,要求:构建金融大数据平台,提升多媒体数据处理能力;创新智能金融产品与服务形态;推广智能客服、监控等技术应用;建立智能风控预警体系。技术支撑:云计算、大数据技术成熟为AI发展奠定了基础。深度学习算法的突破则引爆了本轮AI浪潮,显著提升了复杂任务处理精度,进而推动了计算机视觉、机器学习、自然语言处理(NL
- 时序数据库选型分析
沉默的松饼
时序数据库物联网
在当今数字化时代,大量的时间序列数据不断产生,从工业物联网设备的传感器数据,到金融领域的交易记录,再到互联网应用的用户行为日志等。为了高效地存储、管理和分析这些时序数据,选择一款合适的时序数据库至关重要。本文将对几款主流的时序数据库进行选型分析,帮助读者在众多选项中找到最符合自身需求的数据库解决方案。常见时序数据库概述InfluxDBInfluxDB是一款广泛使用的开源时序数据库。它专为处理时间序
- Milvus向量数据库:处理和分析大规模向量数据
concisedistinct
人工智能milvus数据库向量人工智能机器学习高可用容灾
目录一Milvus概述性能可扩展性易用性二Milvus的核心技术1向量索引HNSWIVFPQ2GPU加速3分布式架构分布式三深入了解Milvus的技术细节1存储机制持久化存储内存存储2数据导入与导出批量导入实时导入3高可用性与容灾机制数据副本自动故障恢复数据备份与恢复四实践中的Milvus1电商平台的图像搜索系统架构性能优化2金融行业的风险控制系统架构成果与展望五结语在当今数据驱动的世界中,处理和
- WIND金融客户端Python接口文档:Python环境下的金融大数据利器
邴韵芯
WIND金融客户端Python接口文档:Python环境下的金融大数据利器【下载地址】WIND金融客户端Python接口文档WINDPY是WIND金融客户端为Python开发者提供的强大接口,支持在Python环境中便捷访问WIND金融数据库。它提供了丰富的函数和命令,涵盖历史数据、实时行情、交易操作等多种功能,适用于量化交易、数据分析等场景。无论是获取股票、基金、债券等金融产品的历史序列、分钟数
- 谈谈国产化信创未来的发展趋势和程序员的选择
信创天地
职场和发展创业创新运维开发java-ee
国产化信创(信息技术应用创新)未来的发展趋势与程序员的选择密切相关。以下从发展趋势和程序员的选择两个方面进行分析:---一、国产化信创未来的发展趋势1.政策支持与市场驱动-政策推动:国家持续出台政策支持信创产业发展,如“十四五”规划强调自主创新和核心技术突破,信创产业成为国家战略的重要组成部分。-市场需求:随着国际形势变化,国内企业对自主可控的信息技术需求增加,信创产品在政府、金融、能源等关键领域
- 信创国产化数据库有哪些?和MySQL数据有啥区别?
信创天地
创业创新职场和发展运维开发mysql
信创国产化数据库是中国自主研发的数据库产品,旨在满足国内对数据安全和自主可控的需求。以下是一些主要的信创国产化数据库及其与MySQL的区别:主要信创国产化数据库1.达梦数据库(DM)-特点:支持多种数据类型和复杂查询,具备高安全性和高可用性。-应用场景:广泛应用于政府、金融、电信等领域。2.人大金仓(Kingbase)-特点:兼容SQL标准,支持多种操作系统和硬件平台,具备高并发处理能力。-应用场
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- (mysql、oracle、pgsql、mongodb、redis、es)主流数据库的核心差异
不愿意透露姓名的樊同学
数据库mysqloraclepostgresql
以下是主流数据库的核心差异及适用场景的全面对比,结合技术特性和实际应用需求整理:一、数据库分类与核心差异1.关系型数据库(RDBMS)数据库核心特点适用场景MySQL开源、读写性能均衡,易用性高,但复杂查询较弱Web应用(博客/电商)、中小企业OLTP系统(如用户管理)Oracle商业级、强事务支持(RAC集群)、功能全面,成本高金融核心系统(银行交易)、大型ERP(复杂事务)PostgreSQL
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><