- 音视频知识图谱 2022.04
关键帧Keyframe
前些时间,我在知识星球上创建了一个音视频技术社群:关键帧的音视频开发圈,在这里群友们会一起做一些打卡任务。比如:周期性地整理音视频相关的面试题,汇集一份音视频面试题集锦,你可以看看《音视频面试题集锦2022.04》。再比如:循序渐进地归纳总结音视频技术知识,绘制一幅音视频知识图谱。下面是2022.04月知识图谱新增的内容节选:1)图谱路径:**采集/音频采集/声音三要素/响度******主观计量响
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- 【笔记】自然语言处理NLP---概论
xhanZ
NLP相关
(from人文学院开设课程)目录1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自然语言的特点1.1.2自然语言处理研究的意义1.1.3国外研究现状1.2NLP的方法、特点和规律1.2.1理性主义与经验主义1.2.2语料库语言学:经验主义研究方法1.2.3汉语语言处理的方法1.2.4基于知识图谱的深度学习1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自
- GraphRAG入门:基本概念、应用场景及学习方法
学习中的程序媛~
学习方法
一、GraphRAG的用途是什么GraphRAG用于复杂信息分析,适合处理跨文档、有噪音或主题抽象的数据.二、GraphRAG能做什么GraphRAG能连接大量信息,回答普通难搜索难以解答的问题.她可以回答跨文档的问题,也能总结数据集的主要主题.三、GraphRAG的特点1.知识图谱提取:使用llm自动从输入文本文档中创建知识图谱,表示数据中的实体、关系和关键声明2.层次聚类使用leiden技术对
- 【Java那些年系列-启航篇 01】史上最强JavaSE学习路线图 & 知识图谱
夏之以寒
Java那些年专栏JavaJavaSEJava学习路线Java知识图谱
【Java那些年系列-启航篇01】史上最强JavaSE学习路线图&知识图谱作者名称:纸飞机-暖阳作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:Java那些年专栏专栏介绍:本专栏涵盖了JavaSE从基础语法到面向对象编程,从异常处理到集合框架,从I/O流到多线程并发,再到网络编程和虚拟机内部机制等一系列编程要素个人感慨:市面上关于JavaSE的学习路线或知
- 【Java那些年系列-启航篇 04】Java程序架构:深入理解类与对象的设计原则
夏之以寒
Java那些年专栏java架构类对象数据结构
作者名称:纸飞机-暖阳作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:Java那些年专栏专栏介绍:本专栏涵盖了JavaSE从基础语法到面向对象编程,从异常处理到集合框架,从I/O流到多线程并发,再到网络编程和虚拟机内部机制等一系列编程要素个人感慨:市面上关于JavaSE的学习路线或知识图谱很繁杂,学习起来比较费劲,Java知识体系非常庞大,刚接触阶段只需要
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- 大数据毕业设计hadoop+spark+hive微博舆情情感分析 知识图谱微博推荐系统
qq_79856539
javaweb大数据hadoop课程设计
(一)Selenium自动化Python爬虫工具采集新浪微博评论、热搜、文章等约10万条存入.csv文件作为数据集;(二)使用pandas+numpy或MapReduce对数据进行数据清洗,生成最终的.csv文件并上传到hdfs;(三)使用hive数仓技术建表建库,导入.csv数据集;(四)离线分析采用hive_sql完成,实时分析利用Spark之Scala完成;(五)统计指标使用sqoop导入m
- 大数据毕业设计天hadoop+spark+hive游戏推荐系统 游戏数据分析可视化大屏 steam游戏爬虫 游戏大数据 机器学习 知识图谱 计算机毕业设计 机器学习 深度学习 人工智能 知识图谱
2401_84159688
程序员大数据hadoop人工智能
|—||一、选题的目的和意义用户往往因为不能及时查看游戏信息而造成许多烦恼。另一方面,游戏商城平台没能进行系统的管理与维护使游戏信息没能及时的更新。而传统的游戏信息管理,采用的还是手工备案、人工查询的方式。但是随之游戏信息的增多这种管理方式的工作量不断加大,这种做法就存在费时费力、缺乏时效性、不利于调动人员的积极性等缺点。一旦网站建立好之后,一方面,用户可以在第一时间在系统里查询所需的信息,另一方
- graphRAG原理解析——基于微软graphRAG+Neo4j llm-graph-builder
赖皮猫
neo4j
知识图谱生成llm-graph-builder(以下简称LGB)也使用了最新的graph+RAG的思路,使用知识图谱来加持RAG,提供更加准确和丰富的知识问答。知识图谱的生成上,利用大模型的泛化能力来自动生成和构建知识图谱,包括实体、关系和属性等。其相较于微软开源的GraphRAG(以下简称MS-GRAG)有很多相似和同源之处,但也有很多的不同。模块能力llm-graph-builderGraph
- 在neo4j中导入csv文件并构建知识图谱
芹菜还是菜
知识图谱neo4j知识图谱
本文csv文件数据来源于openKG中达观的开源知识图谱数据。从开源社区中下载下来的数据文件还是json,先用python把json文件转为csv文件。import csvimport jsonwith open('entities.json','r',encoding='utf-8')as fp: data=json.load(fp,strict=False)csv_file=open('en
- 深入理解PyTorch中的MessagePassing
小桥流水---人工智能
深度学习机器学习算法人工智能pytorch人工智能python
深入理解PyTorch中的MessagePassing图神经网络(GraphNeuralNetworks,简称GNNs)在近年来已成为处理图形数据的一种强大工具,广泛应用于社交网络分析、蛋白质结构预测、知识图谱增强等多个领域。PyTorchGeometric(PyG)是基于PyTorch的一个库,专为图神经网络的研究和实现而设计。在PyG中,MessagePassing类是实现图神经网络层的核心组
- ecchart关系图展示(知识图谱)
P-ShineBeam
知识基础echarts前端javascript
ECharts关系图#box{display:none;background-color:lightgoldenrodyellow;width:200px;height:260px;position:absolute;right:10px;top:150px;}#box-type{display:block;}#box-name{display:block;}/*#box-index{*//*di
- 计算机毕业设计Hadoop+Spark知识图谱体育赛事推荐系统 体育赛事热度预测系统 体育赛事数据分析 体育赛事可视化 体育赛事大数据 机器学习 大数据毕业设计 大数据毕设 机器学习 人工智能
计算机毕业设计大全
开发技术前端:vue.js、element-ui、echarts后端:springboot、mybatis大数据:spark、hadoop数据库:mysql关系型数据库、neo4j图数据库算法:协同过滤推荐算法、MLP深度学习模型、SVD神经网络混合推荐算法、lstm模型、KNN、CNN、Sklearn、K-Means第三方平台:百度AI、阿里云短信、支付宝沙箱支付爬虫:Pythonchrome-
- React+Vis.js(06):vis.js修改选中节点的样式和边的样式
叁拾舞
Vis.jsjavascriptreact.js前端vis.js
文章目录初始化知识图谱选中节点修改节点背景颜色选中节点修改节点文字颜色未选中节点恢复节点背景颜色和文字颜色修改当前选中节点的边的颜色初始化知识图谱创建network.js组件,来初始化原始知识图谱:importReact,{useRef,useEffect}from"react";importvisfrom"vis";constnodes=newvis.DataSet([
- 图神经网络GNN的前世今生
小桥流水---人工智能
Python程序代码深度学习人工智能神经网络人工智能深度学习
GNN图神经网络(GraphNeuralNetwork,简称GNN)已经成为处理图形结构数据的一种强大工具,广泛应用于社交网络分析、知识图谱、推荐系统等领域。在本文中,我们将深入探讨图神经网络的历史背景、关键的发展阶段以及未来可能的发展方向。一、背景介绍图(Graph)是一种数据结构,由节点(Node)和连接节点的边(Edge)组成。在许多现实世界的应用中,数据自然地呈现出图形结构,如社交网络中的
- A Survey of Large Language Models on Generative Graph Analytics: Query, Learning, and Applications
UnknownBody
LLMDailySurveyPaperLLMforGraph语言模型人工智能自然语言处理
本文是LLM系列文章,针对《ASurveyofLargeLanguageModelsonGenerativeGraphAnalytics:Query,Learning,andApplications》的翻译。生成图分析的大型语言模型综述:查询、学习和应用摘要1引言2前言3图结构理解任务4图学习任务5图形推理6图表示7基于知识图谱的增强检索8基于图LLM的应用9基准数据集和评估10未来的方向11结论
- 计算机毕业设计hadoop+spark知识图谱美食推荐系统 美食价格预测 美团推荐系统 美团爬虫 大众点评爬虫 美食数据分析 美食可视化大屏 大数据毕设
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集大众点评美食数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartsspar
- 计算机毕业设计hadoop+spark知识图谱高考分数预测系统 高考志愿推荐系统 高考可视化大屏 高考大数据 高考数据分析 高考爬虫 大数据毕业设计
计算机毕业设计大全
开发技术hadoopsparkspringbootvue.jsPython爬虫、机器学习、深度学习mybatis-plusneo4j知识图谱图数据库mysql协同过滤算法(基于物品、基于用户模式)MLP模型SVD神经网络CNN、KNN、GNN卷积神经网络预测算法阿里云平台百度AI平台阿里大于短信平台lstm模型创新点4种机器学习推荐算法进行高考志愿学校推荐1种深度学习模型进行高考分数线预测hado
- 多模态大模型Internvl-1.5-26B微调后部署及测试实录(附代码)
写代码的中青年
大模型promptpython大模型swift微调lora
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。基于Dify的智能分类方案:大模型结合KNN算法(附代码)OpenCompass:大模型测评工具一文读懂多模态大模型基础架构大模型管理平台:one-api使用指南大模型RAG、ROG、RCG概念科普RAGOnMedicalKG:大模型
- 百度Ernie大模型是什么?
会飞的岛格酱
AIGCAIGC百度人工智能
百度的Ernie模型(EnhancedRepresentationthroughkNowledgeIntegration)是一个基于Transformer架构的预训练语言模型。它由百度研发,旨在通过整合大规模语料和知识图谱来增强模型的语言理解和生成能力。它通过整合大规模语料和知识图谱,采用多任务学习和分层预训练策略,在多个自然语言处理任务上取得了显著的性能提升。Ernie模型的不断发展和优化,使其
- 3.Python数据分析—数据分析入门知识图谱&索引(知识体系中篇)
以山河作礼。
Python数据分析项目数据分析知识图谱数据挖掘python开发语言
3.Python数据分析—数据分析入门知识图谱&索引-知识体系中篇一·个人简介二·数据获取和处理2.1数据来源:2.2数据清洗:2.2.1缺失值处理:2.2.2异常值处理:2.3数据转换:2.3.1数据类型转换:2.3.2数据编码:2.4数据合并与重塑:2.4.1数据合并:2.4.2数据拼接:2.4.3数据重塑:三·数据探索与分析3.1描述性统计分析3.2数据可视化原则和技巧3.3探索性数据分析(
- 智合同如何助力建筑行业合同智能化管理
智合同(小智)
合同智能应用AI技术降本增效提质人工智能自然语言处理知识图谱深度学习大数据
#建筑行业#人工智能#AI#合同智能应用#深度学习#自然语言处理技术#知识图谱智合同-采用深度学习、自然语言处理技术、知识图谱等人工智能技术,为企业提供专业的合同相关的智能服务。其主要服务包含:合同智能审查、合同要素智能提取、合同版本对比、合同智能起草、ICR智能识别、合同履约追踪、文本一致性对比、广告审查、合同范本库等服务。智合同在助力建筑行业合同智能化管理方面具有显著的优势。首先,智合同利用A
- 【大咖力荐 新手必备】软件开发入门,这300篇文章就够了!
高校俱乐部
软件开发新手必备数据编码IP
小编在这里根据知识图谱整理了CSDN站内的优质文章300篇,帮助见习工程提升技术能力、实现系统化学习!基础IT技术文章300篇大合集包含:【信息/编码】进制转换25篇、数据编码25篇;【IP/组网】网关与网段25篇、IP协议26篇、主机与DNS23篇、访问控制37篇;【程序逻辑】JavaScript29篇、常用算法37篇;【Web基础】HTML31篇、CSS32篇、DOM与BOM23篇扫码添加小助
- 知识图谱最新权威综述论文解读:实体发现
ngl567
上期我们介绍了2020年知识图谱最新权威综述论文《ASurveyonKnowledgeGraphs:Representation,AcquisitionandApplications》的知识图谱补全部分,本期我们将一起学习这篇论文的实体发现部分。论文地址:https://arxiv.org/pdf/2002.00388.pdfarxiv.org1实体发现本节将基于实体的知识获取区分为若干细分任务,
- 视频回放- Neo4j “图,无处不在 ”关联系列线上研讨会 : 知识图谱助力企业提升数据应用价值
Jennifer726
音视频知识图谱bigdata数据库开发数据仓库
感谢您注册参加1月12日Neo4j“图,无处不在”关联系列线上研讨会-知识图谱助力企业提升数据应用价值。以下是相关内容视频回放。欢迎推荐给更多的同事和朋友观看。图的影响力-回顾2021,展望2022(Dr.JimWebber,Neo4j首席科学家)https://www.bilibili.com/video/BV1V44y1L7kX/从数据分析到数据智能-Neo4j知识图谱介绍(金昕,Neo4j高
- 构建生物医学知识图谱from zero to hero (4):通过Neo4j构建知识图谱
ASKCOS
AIDDCADD化学生物知识图谱neo4j人工智能
图数据库是一种专门用于存储图形数据的NoSQL数据库。与传统的关系型数据库和其他NoSQL数据库不同,图数据库利用图形数据模型来存储和管理数据。图形数据模型由节点和边组成,节点代表实体,边代表实体之间的关系。例如,在社交网络中,用户可以表示为节点,朋友关系可以表示为边。图数据库具有以下特点:灵活的数据模型:图数据库采用图形数据模型,可以灵活地存储和表示各种类型的数据,例如社交网络、地图、知识图谱等
- 【了解机器学习的定义与发展历程】
AK@
人工智能人工智能机器学习
曾梦想执剑走天涯,我是程序猿【AK】目录简述概要知识图谱简述概要了解机器学习的定义与发展历程知识图谱机器学习(MachineLearning,ML)是一门跨学科的学科,它使用计算机模拟或实现人类学习行为,通过不断地获取新的知识和技能,重新组织已有的知识结构,从而提高自身的性能。简单来说,机器学习就是让计算机从数据中学习规律,并根据这些规律对未来数据进行预测。机器学习的发展历程可以追溯到上世纪50年
- 【人工智能学习思维脉络导图】
AK@
人工智能人工智能学习
曾梦想执剑走天涯,我是程序猿【AK】目录知识图谱1.基础知识2.人工智能核心概念3.实践与应用4.持续学习与进展5.挑战与自我提升6.人脉网络知识图谱人工智能学习思维脉络导图1.基础知识计算机科学基础数学基础(线性代数、微积分、概率论和统计学)编程语言(Python、R等)2.人工智能核心概念机器学习监督学习无监督学习强化学习深度学习神经网络卷积神经网络(CNN)循环神经网络(RNN)自然语言处理
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。