BLOOM模型是Huggingface开发的,在transformers库中提供了支持:
pyTorch是由Facebook基于Torch开发的。
在pytorch中:
CUDA_VISIBLE_DEVICES
)来设定所需的GPU卡;cuda.is_available
来判断是否存在cuda显卡,获取卡设备后,可通过to(device)
把数据放到卡上;device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
import os
import gc
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
input_text = "你好"
batch_size = 1
gpu_mem_map = [30]
data_type = torch.float16
model_path = "/workspace/bloom-7b"
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, truncation_side='left')
# load model
# 通过device_map与max_memory可把模型自动加载到多卡上(并且限制每个卡上加载参数大小)
model_params = {"low_cpu_mem_usage": True, "device_map": 'auto', "torch_dtype": data_type}
max_memory = {}
for i in range(len(gpu_mem_map)):
max_memory[i] = f'{gpu_mem_map[i]}GiB'
model_params['max_memory'] = max_memory
model = AutoModelForCausalLM.from_pretrained(model_path, **model_params)
print(model.gen_config)
##############################
# inference
# gc.collect()
# torch.cuda.empty_cache()
# build input tokens
inputs = [input_text]
inputs *= batch_size
input_tokens = tokenizer(inputs, return_tensors="pt")
# 输入token要与模型在同样设备上(GPU卡),需要通过cuda把token全部放到卡上
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].cuda()
# generate
gen_params = dict(max_new_tokens=1000, do_sample=False, top_k=1)
with torch.no_grad():
output_tokens = model.generate(**input_tokens, **gen_params)
# 生成的输出包含输入,所以需要去掉头部的输入信息
new_tokens = len(output_tokens[0]) - len(input_tokens[0])
print("new tokens:", new_tokens)
output_text = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)
outputs = output_text[0][len(inputs[0]):].strip()
print(outputs)
DeepSpeed是微软推出的大规模模型分布式训练的工具,主要实现了ZeRO并行训练算法。
在加载模型前,一定要先通过HfDeepSpeedConfig来设定配置信息。模型加载完成后通过torch.cuda.current_device()
获取当前所使用的设备;后续在推理前,把数据放到此设备上。
在获取输出单词数量时,中英文使用不同的方式计算(中文每个字为一个,英文根据单词数量判断)。
import argparse
import gc
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, GenerationConfig
from transformers.deepspeed import HfDeepSpeedConfig
import deepspeed
# usage: deepspeed --num_gpus 1 inference.py
def isChinese(words):
for w in words:
if '\u4e00' <= w <= '\u9fff':
return True
return False
def main(args):
data_type = torch.float16
train_micro_batch_size_per_gpu = 1
world_size = args.world_size
train_batch_size = train_micro_batch_size_per_gpu*world_size
model_path = args.model_path
input_text = args.input_text
deepspeed.init_distributed("nccl")
# load model
config = AutoConfig.from_pretrained(model_path)
ds_config = {
"fp16": {
"enabled": data_type == torch.float16,
},
"bf16": {
"enabled": data_type == torch.bfloat16,
},
"zero_optimization": {
"stage": 3,
"overlap_comm": True,
"contiguous_gradients": True,
"reduce_bucket_size": config.hidden_size * config.hidden_size,
"stage3_prefetch_bucket_size": 0.9 * config.hidden_size * config.hidden_size,
"stage3_param_persistence_threshold": 0,
},
"steps_per_print": 2000,
"train_batch_size": train_batch_size,
"train_micro_batch_size_per_gpu": train_micro_batch_size_per_gpu,
"wall_clock_breakdown": False,
}
# 设定此配置信息,以保证模型直接在GPU上加载
hfConf = HfDeepSpeedConfig(ds_config)
print("**Config:", hfConf)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=data_type)
model = model.eval()
# 把模型转换为使用Zero方式
model = deepspeed.initialize(model=model, config_params=ds_config)[0]
model.module.eval()
model = model.module
# 获取当前模型使用的设备,以便后续把数据放到此设备上
device = torch.cuda.current_device()
print("***device:", device)
tokenizer = AutoTokenizer.from_pretrained(model_path, truncation_side='left')
# inference
#gc.collect()
#torch.cuda.empty_cache()
inputs = [input_text]
generate_kwargs = dict(max_new_tokens=200, do_sample=False, top_k=1)
gen_config = GenerationConfig.from_model_config(AutoConfig.from_pretrained(model_path))
gen_config.update(**generate_kwargs)
outputs, words = gen_tokens(device, gen_config, inputs, model, tokenizer)
print(outputs)
def gen_tokens(device, gen_config, inputs, model, tokenizer):
input_tokens = tokenizer(inputs, return_tensors="pt")
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(device)
output_tokens = model.generate(**input_tokens, generation_config=gen_config)
output_text = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)
outputs = output_text[0][len(inputs[0]):].strip()
if isChinese(outputs):
words = len(outputs)
else:
words = len(outputs.split())
return outputs, words
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="deepspeed ds_zero infer")
parser.add_argument('--model_path',
type=str,
default="/models/bloom-7b",
help="The path of model.")
parser.add_argument('--input_text',
type=str,
default="你好",
help="The input text for infer.")
parser.add_argument('--world_size',
type=int,
default=1,
help="The world size")
parser.add_argument('--local_rank',
type=str,
default="0",
help="The local rank")
args = parser.parse_args()
main(args)