- 利用贝叶斯和决策树 来进行医疗诊断的
杨航 AI
决策树算法机器学习
要使用Python实现一个基于贝叶斯分类器和决策树的医疗诊断功能,我们需要构建一个模型,该模型可以根据病人描述的症状预测可能的病症。这个模型将利用贝叶斯分类器和决策树来进行预测。以下是一个基本的实现思路:数据准备:我们需要一个包含不同症状和对应病症的数据集。这个数据集将用于训练我们的贝叶斯分类器和决策树。贝叶斯分类器:我们使用朴素贝叶斯分类器来根据给定的症状计算每个病症的概率。决策树:我们使用决策
- Python实战:爬取小红书评论并进行情感分析
Mr 睡不醒
python开发语言机器学习
在这篇博客中,我们将探讨如何使用Python爬取小红书的评论数据,并使用朴素贝叶斯分类器进行情感分析。本教程将涵盖从数据采集到模型训练和预测的完整流程。准备工作首先,确保你的Python环境中已安装以下库:pipinstallpandassklearnrequestsbeautifulsoup4seleniumselenium需要环境搭建爬取小红书评论我们将使用requests和Beautiful
- 【机器学习笔记】4 朴素贝叶斯
RIKI_1
机器学习机器学习笔记人工智能
贝叶斯方法贝叶斯分类贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。先验概率根据以往经验和分析得到的概率。我们用()来代表在没有训练数据前假设拥有的初始概率。后验概率根据已经发生的事件来分析得到的概率。以(|)代表假设成立的情下观察到数据的概率,因为它反映了在看到训练数据后成立的置信度。联合概率是指在多元的概率分
- 21丨朴素贝叶斯分类(下):如何对文档进行分类?
张九日zx
朴素贝叶斯分类最适合的场景就是文本分类、情感分析和垃圾邮件识别。sklearn机器学习包sklearn的全称叫Scikit-learn,它给我们提供了3个朴素贝叶斯分类算法,分别是高斯朴素贝叶斯(GaussianNB)、多项式朴素贝叶斯(MultinomialNB)和伯努利朴素贝叶斯(BernoulliNB)。自然界的现象比较适合用高斯朴素贝叶斯来处理,而文本分类是使用多项式朴素贝叶斯或者伯努利朴
- 机器学习:多项式模型朴素贝叶斯分类器(原理+python实现)
DocPark
机器学习python
简介多项式朴素贝叶斯也是多用于文本处理,其原理和计算的流程和伯努利朴素贝叶斯基本一致,唯一的区别在于单词的计数方式,由《伯努利朴素贝叶斯》一文可知,在文本处理的环节中,我们将单词是否出现在词组作为特征,但在多项式朴素贝叶斯中,我们将单词在词组中出现的次数作为特征,因此只需要更改文中setOfWords2Vec的函数即可,变成如下方式:defbagOfWords2VecMN(vocabList,in
- 8、python多项式贝叶斯文本分类(完整)
UP Lee
数据挖掘实战多项式贝叶斯文章分类
1、贝叶斯定理(BayesTheorem)朴素贝叶斯分类(NaiveBayesClassifier)贝叶斯分类算法,是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型的数据进行分类的算法2、贝叶斯算法的类型sklearn包naive_bayes模块GaussianNB高斯贝叶斯BernoulliNB伯努利贝叶斯MultionmialNB多项式贝叶斯(需要知道具体每个特征的数值大小)
- 传统图像处理方法对水果在图像中的位置进行分割,有的方法不使用支持向量机或者贝叶斯分类器等分类器直接分割,有的使用分类器进行分割,两者有什么区别?请具体举例?支持向量机分类器需要标签吗?
神笔馬良
图像处理支持向量机人工智能
问题描述:传统图像处理方法对水果在图像中的位置进行分割,有的方法不使用支持向量机或者贝叶斯分类器等分类器直接分割,有的使用分类器进行分割,两者有什么区别?请具体举例?支持向量机分类器需要标签吗?问题解答:传统图像处理方法对水果在图像中的位置进行分割,有的方法不使用支持向量机或者贝叶斯分类器等分类器直接分割,有的使用分类器进行分割,两者之间的主要区别在于采用的方法和技术的不同,以及对图像特征的处理方
- 机器学习入门--朴素贝叶斯原理与实践
Dr.Cup
机器学习入门机器学习概率论人工智能
朴素贝叶斯算法朴素贝叶斯是一种常用的分类算法,其基本思想是根据已有数据的特征和标签,学习出一个概率模型,并利用该模型对新样本进行分类。其优点在于简单快速、易于实现和解释,缺点在于对输入数据的分布做了严格的假设。具体来说,朴素贝叶斯分类器首先根据训练数据计算出每个类别的先验概率P©,即样本中每个类别占比。然后,对于给定的待分类样本,计算出它属于每个类别的条件概率P(X|C),其中X表示样本的特征向量
- Python概率建模算法和图示
亚图跨际
数学机器学习Pythonpython算法概率建模统计
要点Python朴素贝叶斯分类器解释概率学习示例Python概率论,衡量一个或多个变量相互依赖性,从数据中学习概率模型参数,贝叶斯决策论,信息论,线性代数和优化Python线性判别分析分类模型,逻辑回归,线性回归,广义线性模型Python结构化数据,图像和序列神经网络朴素贝叶斯分类器示例概率学习在机器学习的广阔领域中,概率学习开辟了自己独特的空间。在统计和概率的驱动下,概率学习侧重于对数据中存在的
- 机器学习实战 朴素贝叶斯分类器
shenny_
基于概率论的分类方法:朴素贝叶斯我的微信公众号:s406205391;欢迎大家一起学习,一起进步!!!k-近邻算法和决策树会给出“该数据属于哪一类”的明确回答。不过,分类器有时会产生错误结果,这是可以要求分类器给出一个最优的类别的猜测结果,同事给出这个猜测的概率估计值。朴素贝叶斯就是一个概率分类器。我们称之为“朴素”,是因为整个形式化的过程只做最原始、最简单的假设。朴素贝叶斯的优点:在数据较少的情
- 机器学习本科课程 实验5 贝叶斯分类
11egativ1ty
机器学习本科课程机器学习分类python
实验1.使用sklearn的GaussianNB、BernoulliNB、MultinomialNB完成肿瘤预测任务实验内容:使用GaussianNB、BernoulliNB、MultinomialNB完成肿瘤预测计算各自十折交叉验证的精度、查准率、查全率、F1值根据精度、查准率、查全率、F1值的实际意义以及四个值的对比阐述三个算法在肿瘤预测中的表现对比1.读取数据集importpandasasp
- python校园舆情分析系统 可视化 情感分析 朴素贝叶斯分类算法 爬虫 大数据 毕业设计(源码)✅
vx_biyesheji0001
毕业设计biyesheji0001biyesheji0002python分类爬虫毕业设计贝叶斯算法舆情分析情感分析
毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业。1、项目介绍技术栈:Python语言、Django框架、数据库、Echarts可视化、scrapy爬虫技术、HTML朴素贝叶斯分类算法(情感
- 贝叶斯分类器
抄书侠
总结本节从贝叶斯公式出发,通过最小化错误分类概率得到贝叶斯决策理论。进一步定义决策面和决策函数,基于正态分布讨论了贝叶斯分类的样子,但实际情况下,不一定是正态分布的,此时就需要对概率密度函数进行估计。最经典的,如果数据点都来自同一个分布,就是使用最大似然估计,如果数据点不是来自同一个分布,我们引入混合模型,采用EM算法来非线性迭代优化求解。之前都是假设属于某个分布来计算参数,但我们如果在没有假设基
- 2019-03-1
jessica涯
ML——贝叶斯分类器贝叶斯决策论贝叶斯决策论:概率框架下实施决策的基本方法。对分类任务而言,考虑如何基于概率和误判损失来选择最优的类别标记。条件风险/期望损失:贝叶斯判定准则:为最小化总体风险,在每个样本上选择能使条件风险R(c|x)最小的类别标记,即欲使用贝叶斯判定准则最小化决策风险,首先应获得后验概率P(c|x):判别式模型:直接学习决策分布P(c|x)。eg决策树、SVM等;生成式模型:能够
- 机器学习系列——(七)简单分类算法
飞影铠甲
机器学习机器学习分类人工智能
机器学习是目前人工智能领域最热门的分支之一,其中朴素贝叶斯分类算法是一种常用的分类算法。本文将详细介绍朴素贝叶斯分类算法的原理、应用以及优缺点。一、原理朴素贝叶斯分类算法是一种基于贝叶斯定理的分类算法。在分类问题中,我们需要根据给定的数据集,将不同的实例分成不同的类别。朴素贝叶斯分类算法的核心思想就是利用已知类别的训练数据来估计每个特征对于分类结果的影响,并通过这些特征值的联合概率分布来确定新实例
- 朴素贝叶斯分类算法
三三木木七
#机器学习机器学习人工智能sklearn
本文介绍了朴素贝叶斯分类算法,标记后的话一般是自己简要总结的,是比较通俗易懂的,也就是必看的。参考:西瓜书,ysu老师课件【摘要】1.分类算法:分类算法的内容是根据给定特征,求出它所属类别。2.先验概率:就是根据以往的数据分析所得到的概率。后验概率:是得到信息之后重新加以修正得到的概率。3.贝叶斯决策:贝叶斯决策理论中,我们希望选择那个最小化总体期望损失的决策。决策损失的期望值通过对所有可能状态的
- 数据挖掘——考试复习
hzx99
考试复习数据挖掘考试复习
数据挖掘——考试复习考点填空欧几里得距离余弦相似度简单匹配系数Jaccard系数数据集的ClassficationError数据集的Gini值召回率和精度问答支持向量机的“最大边缘”原理软边缘支持向量机的基本工作原理非线性支持向量机的基本工作原理计算朴素贝叶斯分类ID3决策树、计算数据集的熵、计算划分的期望信息、信息增益计算欧式距离、KNN分类给定事务数据集、求频繁K项集,求指定的关联规则的支持度
- 【NLP冲吖~】一、朴素贝叶斯(Naive Bayes)
漂泊老猫
自然语言处理NLP自然语言处理人工智能机器学习
0、朴素贝叶斯法朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布,然后基于此模型,对给定的输入xxx,利用贝叶斯定理求出后验概率最大的输出yyy。朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。从数学角度,定义分类问题如下:已知集合C=y1,y2,...,ynC={y_1,y_2,...,y_n}C=y1
- 计算机设计大赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习
iuerfee
python
文章目录0前言2垃圾短信/邮件分类算法原理2.1常用的分类器-贝叶斯分类器3数据集介绍4数据预处理5特征提取6训练分类器7综合测试结果8其他模型方法9最后0前言优质竞赛项目系列,今天要分享的是垃圾邮件(短信)分类算法实现机器学习深度学习该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https:
- 朴素贝叶斯算法
汪汪军师
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。贝叶斯公式:换种写法:例题:患有贝叶死的情况下,测出为阳性的概率为P(A|B1)=99.9%,没有患贝叶死,但测出为阳性的概率为P(A|B2)=0.1%。对万分之一的解读:。患有贝叶死的概率为P(B1)=0.01%,没有患贝叶死的概率P(B2)=99.
- 机器学习算法
Rainysong
1、朴素贝叶斯分类器:https://www.cnblogs.com/csguo/p/7804355.html
- 大创项目推荐 题目:垃圾邮件(短信)分类 算法实现 机器学习 深度学习 开题
laafeer
分类python
文章目录1前言2垃圾短信/邮件分类算法原理2.1常用的分类器-贝叶斯分类器3数据集介绍4数据预处理5特征提取6训练分类器7综合测试结果8其他模型方法9最后1前言优质竞赛项目系列,今天要分享的是基于机器学习的垃圾邮件分类该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate2垃圾短信/邮件分
- 隐马尔可夫模型【维特比算法】
格兰芬多_未名
机器学习算法人工智能机器学习
机器学习笔记机器学习系列笔记,主要参考李航的《机器学习方法》,见参考资料。第一章机器学习简介第二章感知机第三章支持向量机第四章朴素贝叶斯分类器第五章Logistic回归第六章线性回归和岭回归第七章多层感知机与反向传播【Python实例】第八章主成分分析【PCA降维】第九章隐马尔可夫模型文章目录机器学习笔记一、维特比算法核心思想二、viterbi算法参考资料维特比算法是一种动态规划算法用于寻找最有可
- 奇异值分解(SVD)【详细推导证明】
格兰芬多_未名
机器学习机器学习矩阵分解
机器学习笔记机器学习系列笔记,主要参考李航的《机器学习方法》,见参考资料。第一章机器学习简介第二章感知机第三章支持向量机第四章朴素贝叶斯分类器第五章Logistic回归第六章线性回归和岭回归第七章多层感知机与反向传播【Python实例】第八章主成分分析【PCA降维】第九章隐马尔可夫模型第十章奇异值分解文章目录机器学习笔记一、矩阵的基本子空间二、舒尔分解三、奇异值分解(1)定义(2)证明(3)与四大
- 【机器学习】西瓜书要点个人整理
_hermit:
机器学习机器学习人工智能学习
目录前置基础知识第三章线性模型机器学习三要素1.函数集合2.目标函数3.优化方法4.模型评估方法对数几率回归(逻辑回归)第四章决策树第五章SVM第六章贝叶斯分类器第八章集成学习第九章神经网络前情提要:本文适合在学习机器学习课程前,对课程的要点进行简单预习。本文中提到的一些概念,大多是老师课上会重点讲的、考试要考的。此外,在进行复习时也可以通过这些概念引入,从而去更深入理解一些模型原理。前置基础知识
- 机器学习——python训练RNN模型实战(傻瓜式教学,小学生都可以学会)代码开源
苏苏不是叔
机器学习pythonrnn
机器学习实战目录第一章python训练线性模型实战第二章python训练决策树模型实战第三章python训练神经网络模型实战第四章python训练支持向量机模型实战第五章python训练贝叶斯分类器模型实战第六章python训练集成学习模型实战第七章python训练聚类模型实战第八章python训练KNN模型实战第九章python训练CNN模型实战第十章python训练RNN模型实战......(
- 机器学习——python训练CNN模型实战(傻瓜式教学,小学生都可以学会)代码开源
苏苏不是叔
机器学习pythoncnn
机器学习实战目录第一章python训练线性模型实战第二章python训练决策树模型实战第三章python训练神经网络模型实战第四章python训练支持向量机模型实战第五章python训练贝叶斯分类器模型实战第六章python训练集成学习模型实战第七章python训练聚类模型实战第八章python训练KNN模型实战第九章python训练CNN模型实战第十章python训练RNN模型实战......(
- 机器学习 -- 朴素贝叶斯分类器
北堂飘霜
pythonAI机器学习人工智能
场景朴素贝叶斯分类器是一种基于贝叶斯定理的简单概率分类器,广泛应用于各种机器学习场景。朴素贝叶斯分类器利用贝叶斯定理来预测一个数据点的类别。贝叶斯定理提供了一种计算条件概率的方法,即在已知某些信息的情况下,事件发生的概率。“朴素”一词源于该算法对特征之间相互独立的假设。在现实世界中,这种假设可能并不总是成立,但朴素贝叶斯在实践中仍然表现良好。对于给定的训练数据集,算法首先基于类别计算特征的概率分布
- 贝叶斯分类器(公式推导+举例应用)
Nie同学
机器学习机器学习分类
文章目录引言贝叶斯决策论先验概率和后验概率极大似然估计朴素贝叶斯分类器朴素贝叶斯分类器的优点与缺点优点缺点总结实验分析引言在机器学习的世界中,有一类强大而受欢迎的算法——贝叶斯分类器,它倚仗着贝叶斯定理和朴素的独立性假设,成为解决分类问题的得力工具。这种算法的独特之处在于其对概率的建模,使得它在面对不确定性和大规模特征空间时表现卓越。本文将深入探讨贝叶斯分类器,首先通过详细的公式推导带你走进其内部
- 机器学习笔记E4--朴素贝叶斯
EL33
按照计划今天该是整理到朴素贝叶斯了,但是线性回归的实现和逻辑回归都还没有完成,欠的东西越来越多。预备知识贝叶斯定理(BayesianTheorem)先验概率与后验概率朴素贝叶斯分类器何为“朴素”:属性条件独立性假设分类准则离散属性与连续属性值的分别处理例子讲解拉普拉斯修正(Laplaciancorrection)了解朴素贝叶斯需要先了解贝叶斯定理,深入了解朴素贝叶斯朴素贝叶斯分类器
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL