- DQN的原理和代码实现
SmallerFL
NLP&机器学习DQN强化学习深度学习
文章目录1.概述2.DQN的训练步骤2.1初始化2.2训练循环2.3终止条件2.4评估3.代码示例1.概述深度Q网络(DeepQ-Network,DQN)是强化学习中的一种重要算法,由GoogleDeepMind于2013年提出。DQN结合了Q学习和深度学习,通过使用神经网络来近似Q值函数,解决了传统Q学习在高维状态空间中的问题。2.DQN的训练步骤2.1初始化环境:定义环境(例如,Atari游戏
- DQN原理和代码实现
KPer_Yang
机器学习机器学习人工智能
参考:王树森《强化学习》书籍、课程、代码1、基本概念折扣回报:Ut=Rt+γ⋅Rt+1+γ2⋅Rt+2+⋯+γn−t⋅Rn.U_t=R_t+\gamma\cdotR_{t+1}+\gamma^2\cdotR_{t+2}+\cdots+\gamma^{n-t}\cdotR_n.Ut=Rt+γ⋅Rt+1+γ2⋅Rt+2+⋯+γn−t⋅Rn.动作价值函数:Qπ(st,at)=E[Ut∣St=st,At=
- ML.NET库学习006:成人人口普查数据分析与分类预测
North_D
ML.NET库机器学习人工智能深度学习数据挖掘目标检测自然语言处理神经网络
文章目录ML.NET库学习006:成人人口普查数据分析与分类预测概述数据集数据字段解释为何数据准备很重要主要功能与模块数据准备机器学习工作流代码结构说明数据准备模块机器学习工作流数据加载与分割特征工程与模型训练模型评估与预测实现细节与注意事项数据准备模块机器学习工作流性能优化项目优势LightGBM分类器原理说明总结ML.NET库学习006:成人人口普查数据分析与分类预测概述本项目使用C#和ML.
- 【YOLO】常用脚本
我才是真正的17号
脚本YOLO人工智能深度学习
目录VOC转YOLO划分训练集、测试集与验证集VOC转YOLOimportosimportxml.etree.ElementTreeasETdefconvert(size,box):dw=1./size[0]dh=1./size[1]x=(box[0]+box[1])/2.0y=(box[2]+box[3])/2.0w=box[1]-box[0]h=box[3]-box[2]x=x*dww=w*d
- [Go] golang缓冲通道实现管理一组goroutine工作
程序员老狼
通道1.当一个资源需要在goroutine之间共享时,通道在goroutine之间架起了一个管道2.无缓冲通道和有缓冲通道,make的第二个参数就是缓冲区大小3.无缓冲通道需要发送和接收都准备好,否则先执行的goroutine会阻塞等待4.有缓冲的通道,在缓冲区没满之前,发送和接收动作都不会阻塞,空的时候接收才会阻塞time.Now().Unix()当前时间戳time.Millisecond毫秒t
- 数字人技术在短视频中的应用
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
数字人、短视频、人工智能、计算机视觉、自然语言处理、虚拟主播、内容创作1.背景介绍短视频作为一种新兴的传播媒介,其内容形式丰富、传播速度快、用户粘性强,已成为当今互联网领域最热门的应用之一。随着技术的不断发展,数字人技术逐渐成熟,并开始在短视频领域得到广泛应用。数字人是指利用计算机技术模拟真实人类形象和行为的虚拟角色,其具备逼真的外形、流畅的肢体动作和自然的语言表达能力。数字人技术在短视频领域的应
- c++加载TensorRT调用深度学习模型方法
feibaoqq
深度学习深度学习YOLO
使用TensorRT来调用训练好的模型并输出结果是一个高效的推理过程,特别是在需要低延迟和高吞吐量的应用场景中。以下是一个基本的步骤指南,展示了如何在C++中使用TensorRT进行推理。步骤1:准备环境安装TensorRT:确保你已经安装了NVIDIATensorRT库。准备模型:确保你的训练好的模型已经转换为TensorRT支持的格式,通常是一个.engine文件。你可以使用onnx-tens
- X-R1 项目代码文件的详细剖析并精读rewards、grpo、x_grpo_trainer(src/x_r1)
仙人掌_lz
人工智能人工智能深度学习学习
这个项目名为[X-R1](https://github.com/dhcode-cpp/X-R1),是一个基于强化学习的训练框架,旨在构建一个易于使用、低成本的训练框架,以加速ScalingPost-Training的开发。以下是对该项目的详细解释:项目结构项目的主要目录结构如下:X-R1/├──.gitignore├──LICENSE├──Makefile├──README.md├──requir
- 基于开源千文模型(如Qwen、ChatGLM等)实施如何进行动态蒸馏,详细说明操作步骤.
墨者清风
模型训练人工智能技术发展模型动态蒸馏人工智能深度学习语言模型
基于开源千文模型(如Qwen、ChatGLM等)实施如何进行动态蒸馏,详细说明操作步骤.1.动态蒸馏的核心思想动态蒸馏的目标是通过教师模型(通常是一个较大的预训练模型)的输出,指导学生模型(较小的模型)的训练。具体来说:教师模型:提供软标签(softlabels),即概率分布,而不是硬标签(hardlabels)。学生模型:通过模仿教师模型的输出分布,学习更丰富的知识。动态蒸馏:在训练过程中,教师
- tiktok框架_大动作!海外版抖音TikTok架构将调整,字节跳动开始发力
weixin_39663593
欧界报道:说到当下最流行的短视频软件,那非抖音莫属,抖音不仅在国内火遍大江南北,在海外同样拥有巨大的市场,抖音海外版TikTok同样是国际短视频软件行业中的一匹黑马。就在几天前,TikTok背后的爸爸字节跳动又有了新动作,字节跳动表示,将会对TikTok进行架构调整,并且设立海外总部来专门为TikTok设计发展方案。声明中显示,字节跳动尽管调整TikTok架构,但是依旧会把保护用户隐私安全放在第一
- 八段锦教程:动作要领
云纳星辰怀自在
中医养生生活
八段锦是一种流传已久的健身气功,动作柔和缓慢,适合各个年龄段的人练习。以下是对八段锦每一式重要动作要领的详细讲解:**预备式:***自然站立,双脚与肩同宽,膝盖微屈,松腰松胯,含胸拔背,沉肩坠肘,目视前方。*全身放松,呼吸自然,心平气和。**第一式:两手托天理三焦***两臂缓缓从体侧上举,掌心向上,至头顶上方,两臂伸直,掌心相对,指尖向上。*目视前方,保持片刻,感受脊柱的拉伸。*两臂缓缓下落,还原
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- 【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测
XD742971636
深度学习机器学习深度学习YOLO目标检测
介绍一个酷炫的目标检测方式:论文:https://arxiv.org/abs/2401.17270代码:https://github.com/AILab-CVC/YOLO-World文章目录摘要Introduction第2章相关工作2.1传统目标检测2.2开放词汇目标检测第3章方法3.1预训练公式:区域-文本对3.2模型架构3.3可重参数化的视觉-语言路径聚合网络(RepVL-PAN)3.4预训练
- 优化算法全景解析:从梯度下降到群体智能
welcome_123_
算法python人工智能
一、引言:为什么需要优化算法?在AlphaGo击败人类围棋冠军的背后,在特斯拉自动驾驶系统实时决策的瞬间,在推荐系统精准推送内容的过程中,优化算法始终是推动这些技术落地的核心引擎。无论是机器学习模型的训练,还是复杂系统的参数调优,优化算法的本质是:在给定的约束条件下,找到使目标函数最优的解。本文将深入解析优化算法的核心原理、经典方法、现代进展及实战应用,助你全面掌握这一技术利器。二、优化算法分类图
- PyTorch入门实战:从零搭建你的第一个神经网络
不打滑的西瓜皮
机器学习深度学习人工智能神经网络pythonpytorchpycharm
目录一、PyTorch简介:为什么选择它?二、环境搭建:5分钟快速安装三、核心概念:张量与自动求导1.张量(Tensor):深度学习的数据基石2.自动求导(Autograd):神经网络训练的核心四、实战:手写数字识别(MNIST)1.数据集加载与预处理2.构建卷积神经网络(CNN)3.训练与评估五、下一步学习建议一、PyTorch简介:为什么选择它?PyTorch是当前最热门的深度学习框架之一,由
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- 基于YOLOv5深度学习的木材表面缺陷检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
随着工业自动化的发展,木材加工行业对产品质量的要求日益提高。木材表面缺陷的检测是确保产品质量的重要环节。传统的人工检测方式不仅费时费力,而且容易受到人为因素的影响。基于深度学习的目标检测技术,尤其是YOLOv5,凭借其优越的实时性和准确性,成为木材表面缺陷检测的有效工具。本博客将详细介绍如何构建一个基于YOLOv5的木材表面缺陷检测系统,包括数据集准备、模型训练、UI界面开发及完整代码实现。目录目
- 动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)
lusterku
动手学深度学习深度学习笔记线性回归
动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)线性回归的从零开始实现生成数据集读取数据集初始化模型参数定义模型定义损失函数定义优化算法训练练习1.如果我们将权重初始化为零,会发生什么。算法仍然有效吗?2.计算二阶导数时可能会遇到什么问题?这些问题可以如何解决?3.为什么在`squared_loss`函数中需要使用`reshape`函数?4.尝试使用不同的学习率,观察损失函数值下
- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 利用Infinity Embeddings创建文本嵌入
qahaj
python
技术背景介绍在自然语言处理(NLP)任务中,文本嵌入是一种将文本数据转换成固定维度向量的技术。这些向量能够捕捉文本之间的语义关系,使得在后续的任务(如文本分类、相似度计算等)中非常实用。Infinity嵌入模型是一种能够方便创建高质量文本嵌入的现代工具。核心原理解析InfinityEmbeddings利用强大的预训练模型,通过对输入的文本数据进行编码,生成具有语义意义的高维向量。这个过程不仅仅是简
- 仅用10张图片,AI就能学会识别万物?多模态小样本学习颠覆传统!
沃恩智慧
人工智能深度学习人工智能学习深度学习
小样本学习与多模态结合是当前人工智能领域的热门研究方向,旨在通过结合多模态数据(如视觉、语言、音频等)来提高模型在数据稀缺情况下的学习效率和性能。例如,ZS-DeconvNet方法在Nature上发表,展示了其在极低训练数据需求下,将图像分辨率提升超过1.5倍衍射极限的能力。此外,CPE-CLIP和MMFL等方法通过利用预训练模型和冻结的大规模视觉语言模型,实现了跨会话的迁移学习和快速适应新样本。
- 基于华为自研NPU Ascend 910的TensorFlow 1.x训练脚本迁移和使能混合精度记录
Tianyi Li 1997
华为云tensorflow华为人工智能深度学习python
简介基于TesorFlow1.x以Sess.run形式搭建入门级——手写数字分类网络,并迁移到华为自研NPUAscend910,同时使能混合精度。硬件介绍华为自研NPUAscend910,即昇腾910AI处理器(简称NPU),根据官方介绍,是在2019年发布的人工智能(AI)专用的神经网络处理器,其算力高达256T,最新款算力高达310T,是业界主流芯片算力的2倍。当前业界大多数训练脚本基于Ten
- Deepseek到底有多牛?ChatGPT、DeepSeek等大语言模型助力科研应用
小艳加油
语言类chatgpt人工智能DeepSeek大语言模型
DeepSeek模型具有以下优势:●高性能推理能力:DeepSeek在推理能力上与国际领先的模型如OpenAI的GPT-4相媲美,能够解决复杂的数学难题、分析法律条文等。●成本优势:DeepSeek的参数规模虽然庞大,但训练和使用费用却低至一个数量级,大大降低了用户的经济负担。例如,DeepSeek-R1的训练费用不到OpenAIGPT-4的十分之一,API定价仅为OpenAIo1
- PyTorch Lightning LightningDataModule 介绍
qq_27390023
pytorch人工智能python
LightningDataModule是PyTorchLightning提供的数据模块,用于统一管理数据加载流程(包括数据准备、预处理、拆分、批量加载等)。它的核心作用是将数据处理逻辑与模型解耦,提高代码的可复用性和可读性。1.LightningDataModule的作用✅封装数据预处理:数据下载、清理、转换等步骤都可以在LightningDataModule中完成。✅统一数据加载流程:确保训练、
- 代码随想录算法训练营第三天 | 链表理论基础,203.移除链表元素,707.设计链表,206.反转链表
白鹭鸣鸣!
算法链表数据结构java
代码随想录算法训练营第三天|链表理论基础,203.移除链表元素,707.设计链表,206.反转链表203.移除链表元素给你一个链表的头节点head和一个整数val,请你删除链表中所有满足Node.val==val的节点,并返回新的头节点。示例1:输入:head=[1,2,6,3,4,5,6],val=6输出:[1,2,3,4,5]示例2:输入:head=[],val=1输出:[]示例3:输入:he
- 【笔记】使用 Pytorch 进行分布式训练
LittleNyima
人工智能深度学习pytorch分布式
本文原文以CCBY-NC-SA4.0许可协议发布于技术相关|使用Pytorch进行分布式训练,转载请注明出处。其实Pytorch分布式训练已经不算什么新技术了,之所以专门写一篇blog是因为今天训模型的时候出现了一个没见过的问题,在调试的时候发现自己平时都是用别人写好的分布式代码,没有深入研究过其中的实现细节,因此感觉有必要整理吸收一下。最简单的数据并行作为最简单的并行计算方式,使用nn.Data
- 实验随记2-Pytorch Lightning多机多卡训练
晓岚和雪
实验随记pytorch人工智能python深度学习分布式
本文章主要收录笔者在阅读时发现的一些比较优质的多机多卡训练教程~~,由于pytorchLightning多机多卡示例很少,因此需要等笔者最近做完实验验证后才能更新示例。不断完善中…~~及多机多卡训练细节。任务需求:实现多机多卡训练,模型可能继承torch.nn或者torch.lightning。示例实现5节点4GPU共计20卡训练。使用pytorch_lightning==1.9.4存在bug:启
- PyTorch Lightning多GPU分布式日志介绍
qq_27390023
pytorch人工智能python
分布式日志是指在分布式系统中,多个节点(如多台机器或多个GPU)协同工作时,对系统运行状态、错误信息、性能指标等进行记录的过程。在多GPU/分布式训练环境下,多个进程会同时运行,普通的print()或logging可能会在所有GPU上重复输出,导致日志混乱。PyTorchLightning提供了一些分布式日志控制工具,确保日志仅在rank0进程打印,防止重复输出。lightning_utiliti
- ACM训练系统 1003 [编程入门]密码破译 C
眉间白
ACMc语言蓝桥杯c++
代码思路:利用srcii对每个字符进行加四处理一使用四个变量和getchar();对每个字符加密;。//baizhen#includeintmain(void){chara,b,c,d,e;a=getchar();b=getchar();c=getchar();d=getchar();e=getchar();printf("%c%c%c%c%c",a+4,b+4,c+4,d+4,e+4);//字符
- 利用Blackbox AI让编程更轻松
人工智能ai开发图像处理
引言随着人工智能技术的发展,AI已经成为工作中不可缺少的工具之一。俗话讲“术业有专攻”,对AI来说当然也是如此。由于训练集、调教等方面的差别,不同的AI适用的工作也不尽相同。在编程辅助方面,已经有一系列比较成熟的平台,但它们一方面价格昂贵,另一方面功能比较单一。Blackbox.ai是一个新出现的人工智能平台,它主要针对的是编程和机器学习方面的AI技术落地。和其他AI平台相比,它提供了简洁美观的界
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/pwd@192.168.0.5:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理