机器学习模型部署--打通前后端任督二脉

前言

学历与定位

近日在某论坛,有网友提问道:搞机器学习是不是要博士或是硕士学历,是不是要求很高,顶会论文?本科生或者更低学历的,是不是就没有机会了?从最近公司的招聘来看,算法工程师的 bar 确实有在提高。但在某些事业部,仍需要很大的人力来做落地场景。每个人都要找准自己的定位,公司也有它的部门定位。如果是发论文、要在学术界站稳脚跟,给投资人“我们很重视最新技术”的信心,那博士确实很重要。另一个角度,从实用角度来说,研究生和本科生可能性价比更高。当然,作为一个小本就工作的人,没有较为丰富的实战经验,有机会的话,还是拿到硕士及更高学历比较好。这里的实战经验就比如:搭建一个完整的、涉及算法模型、后端及前端的系统。

mobile.jpg

模型算法的实用主义

机器学习的实用主义,不是在论文多少,而是用正确的方法去解决正确的问题。而作为背后的工程师,除了调参、除了写 sql,做调包侠、做 sql boy、报表 boy 以外,在之前的文章也提到过,要学会做正确的展示,做全套的工程化实施。毕竟,等排期很难受;有些情况前后端资源不够,或者优先级很低,那就需要自己动手了。以下以上面的垃圾邮件分类为例子,说明该如何搭建一个前后端完整的机器学习系统。

关注微信公众号:谷粒先生,下载权重文件并第一时间获取更新。

这里将本次的任务拆解,分为三个部分来讲。后端 flask、前端 Vue、ML 模型采用 flair,项目地址 kuhung/flask_vue_ML

后端 flask

相关依赖的安装

pip install -r requirements.txt

核心函数

  1. 导入函数包
from flask import Flask, jsonify, request
from flask_cors import CORS # 做跨域的准备
from flask import session # 追踪客户端会话

from flair.models import TextClassifier # 模型导入,采用前不久开源的 flair 做文本分类
from flair.data import Sentence

  1. 准备工作
app = Flask(__name__) # 声明准备
app.secret_key = "super_secret_key"

CORS(app)
classifier = TextClassifier.load_from_file('models/best-model.pt') # 模型加载

  1. 配置 flask 的路由
# 根路由配置
@app.route('/', methods=['GET'])
def index():
    return jsonify("welcome to Kuhung API")

# GET 方法,这里 session 的作用是追踪客户端会话,防止重复请求模型
@app.route('/api/tasks', methods=['GET'])
def get_result():
    result = []
    try:
        data_result = session['my_result']
        result.append ({'title': data_result['title'], 'tag': data_result['tag'] })
    except:
        result.append ({'title': 'The txt you input', 'tag': 'spam or ham' })
    return jsonify(result)

# POST 方法
@app.route('/api/task', methods=['POST'])
def input_predict_text():

    title = request.get_json()['title'] # 解析请求

    sentence = Sentence(title) # 对请求做数据预处理
    classifier.predict(sentence) # 调用模型,做预测,返回带标签的数据

    text = sentence.to_plain_string() # 解析出原始数据
    label = sentence.labels[0] # 解析出标签
    result = {'title' : text, 'tag' : label.value} # 拼接成字典格式
    session['my_result'] = result # 存入 session ,以减少重复请求对模型的压力
    
    return jsonify(result) # 返回 json 格式的数据

if __name__ == '__main__':
    app.run(debug=True)  # 开发过程中开启 debug 调试模式

启动服务

python app.py

前端 vue

前端采用 Vue 框架,与后端分离。使用 Webpack 进行资源管理与打包。

相关依赖的安装

npm install -g vue-cli
npm install

自定义组件

通过 vue init webpack flask_vue_ML 后,进入项目文件夹,增加自定义内容。

index.html




  
    
    
    exposemodel
  
  
    

src 文件夹

  • components
    • Home.vue // 自定义组件,增加
  • router
    • index.js // 路由,修改
  • App.vue // 主组件,修改
  • main.js // 入口文件,修改
Home.vue

这里定义页面的基本样式,以及获取数据的逻辑。