人工智能标准化白皮书(2018)学习笔记

一、定义

本白皮书认为,人工智能是利用数字计算机或者数字计算机控制的机器模拟延伸扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。

二、分类

根据人工智能是否能真正实现推理、思考和解决问题,可以将人工智能分为弱人工智能强人工智能。

弱人工智能是指不能真正实现推理和解决问题的智能机器,这些机器表面看像是智能的,但是并不真正拥有智能,也不会有自主意识。当前处于并将长期处于这个时期

强人工智能是指真正能思维的智能机器,并且认为这样的机器是有知觉的和自我意识的,这类机器可分为类人(机器的思考和推理类似人的思维)与非类人(机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式)两大类。

三、人工智能学派

五个学派:符号主义、连接主义、行为主义、统计主义、仿真主义。

通向强人工智能还有一条“新”路线,这里称为“仿真主义”。这条新路线通过制造先进的大脑探测工具从结构上解析大脑,再利用工程技术手段构造出模仿大脑神经网络基元及结构的仿脑装置,最后通过环境刺激和交互训练仿真大脑实现类人智能。

四、人工智能特征

(1)由人类设计,为人类服务,本质为计算,基础为数据。

(2)能感知环境,能产生反应,能与人交互,能与人互补。

(3)有适应特性,有学习能力,有演化迭代,有连接扩展。

五、人工智能框架

信息链:数据—信息—知识—智慧

IT链:基础设备提供者——信息提供者——信息分析处理者——系统产业协调者

智能信息表示与形成是指为描述外围世界所作的一组约定,分阶段对智能信息进行符号化和形式化的智能信息建模、抽取、预处理、训练数据等。

智能信息推理是指在计算机或智能系统中,模拟人类的智能推理方式,依据推理控制策略,利用形式化的信息进行机器思维和求解问题的过程,典型的功能是搜索与匹配

智能信息决策是指智能信息经过推理后进行决策的过程,通常提供分类、排序、预测等功能。

智能执行与输出作为智能信息输出的环节,是对输入作出的响应,输出整个智能信息流动过程的结果,包括运动、显示、发声、交互、合成等功能。

六、人工智能关键技术

(1)机器学习

按学习模式分:监督学习、无监督学习、强化学习(从环境到行为映射的学习)

按学习方法分:传统机器学习、深度学习、迁移学习、主动学习、演化学习

传统机器学习平衡了学习结果的有效性与学习模型的可解释性,为解决有限样本的学习问题提供了一种框架,主要用于有限样本情况下的模式分类、回归分析、概率密度估计等。

深度学习的特点是放弃了可解释性,单纯追求学习的有效性。经过多年的摸索尝试和研究,已经产生了诸多深度神经网络的模型,其中卷积神经网络、循环神经网络是两类典型的模型。卷积神经网络常被应用于空间性分布数据;循环神经网络在神经网络中引入了记忆和反馈,常被应用于时间性分布数据。

(2)计算机视觉

计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

(视频编解码是指通过特定的压缩技术,将视频流进行压缩。视频流传输中最为重要的编解码标准有国际电联的 H.261、H.263、H.264、H.265、M-JPEG 和MPEG 系列标准。视频压缩编码主要分为两大类:无损压缩和有损压缩。)

(3)技术发展趋势

(1)技术平台开源化;(2)专用智能向通用智能发展;(3)智能感知向智能认知方向迈进。

七、产业现状与发展趋势

(1)产业链


具体分析核心业态产业链

1.智能基础设施

智能基础设施为人工智能产业提供计算能力支撑,其范围包括智能传感器、智能芯片、分布式计算框架等,是人工智能产业发展的重要保障。

智能芯片从应用角度可以分为训练和推理两种类型。从部署场景来看,可以分为云端和设备端两步大类。目前,训练和推理通常都在云端实现,只有对实时性要求很高的设备会交由设备端进行处理。按技术架构来看,智能芯片可以分为通用类芯片(CPU、GPU、FPGA)、基于 FPGA 的半定制化芯片、全定制化 ASIC 芯片、类脑计算芯片(IBM TrueNorth)。另外,主要的人工智能处理器还有 DPU、BPU、NPU、EPU 等适用于不同场景和功能的人工智能芯片。未来的智能芯片主要是在两个方向发展:一是模仿人类大脑结构的芯片,二是量子芯片。

智能传感器是具有信息处理功能的传感器。智能传感器带有微处理机,具备采集、处理、交换信息等功能,是传感器集成化与微处理机相结合的产物。未来,高敏度、高精度、高可靠性、微型化、集成化将成为智能传感器发展的重要趋势。

分布式计算框架。面对海量的数据处理、复杂的知识推理,常规的单机计算模式已经不能支撑。所以,计算模式必须将巨大的计算任务分成小的单机可以承受的计算任务,即云计算、边缘计算、大数据技术提供了基础的计算框架。目前流行的分布式计算框架如 OpenStack、Hadoop、Storm、Spark、Samza、Bigflow 等。各种开源深度学习框架也层出不穷,其中包括 TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4、Lasagne、Neon 等等。

2、智能信息及数据

目前,在人工智能数据采集、分析、处理方面的企业主要有两种:一种是数据集提供商,以提供数据为自身主要业务,为需求方提供机器学习等技术所需要的不同领域的数据集;另一种是数据采集、分析、处理综合性厂商,自身拥有获取数据的途径,并对采集到的数据进行分析处理,最终将处理后的结果提供给需求方进行使用。

3、智能技术服务

智能技术服务主要关注如何构建人工智能的技术平台,并对外提供人工智能相关的服务。此类厂商在人工智能产业链中处于关键位置,依托基础设施和大量的数据,为各类人工智能的应用提供关键性的技术平台、解决方案和服务。目前,从提供服务的类型来看,提供技术服务厂商包括以下几类:

(1)提供人工智能的技术平台和算法模型。此类厂商主要针对用户或者行业需求,提供人工智能技术平台以及算法模型。用户可以在人工智能平台之上,通过一系列的算法模型来进行人工智能的应用开发。此类厂商主要关注人工智能的通用计算框架、算法模型、通用技术等关键领域。(谷歌、百度、微软)

(2)提供人工智能的整体解决方案。此类厂商主要针对用户或者行业需求,设计和提供包括软、硬件一体的行业人工智能解决方案,整体方案中集成多种人工智能算法模型以及软、硬件环境,帮助用户或行业解决特定的问题。此类厂商重点关注人工智能在特定领域或者特定行业的应用。(海康、大华、商汤、旷世)

(3)提供人工智能在线服务。此类厂商一般为传统的云服务提供厂商,主要依托其已有的云计算和大数据应用的用户资源,聚集用户的需求和行业属性,为客户提供多类型的人工智能服务;从各类模型算法和计算框架的 API 等特定应用平台到特定行业的整体解决方案等,进一步吸引大量的用户使用,从而进一步完善其提供的人工智能服务。此类厂商主要提供相对通用的人工智能服务,同时也会关注一些重点行业和领域。(百度AI开放平台、阿里城市大脑)

4、智能产品

智能产品是指将人工智能领域的技术成果集成化、产品化。随着制造强国、网络强国、数字中国建设进程的加快,在制造、家居、金融、教育、交通、安防、医疗、物流等领域对人工智能技术和产品的需求将进一步释放,相关智能产品的种类和形态也将越来越丰富。

你可能感兴趣的:(人工智能标准化白皮书(2018)学习笔记)