- 图书管理系统 Axios 源码__获取图书列表
还是鼠鼠
javascriptbootstrapajax前端
目录核心功能源码介绍1.获取图书列表技术要点适用人群本项目是一个基于HTML+Bootstrap+JavaScript+Axios开发的图书管理系统,可用于添加、编辑、删除和管理图书信息,适合前端开发者学习前端交互设计、Axios数据请求以及Bootstrap样式布局。核心功能图书列表渲染通过Axios发送GET请求获取服务器上的图书数据。渲染数据到HTML表格,展示书籍的名称、作者、出版社等信息
- DiffuEraser: 一种基于扩散模型的视频修复技术
扫地僧985
音视频
视频修复算法结合了基于流的像素传播与基于Transformer的生成方法,利用光流信息和相邻帧的信息来恢复纹理和对象,同时通过视觉Transformer完成被遮挡区域的修复。然而,这些方法在处理大范围遮挡时常常会遇到模糊和时序不一致的问题,这凸显了增强生成能力模型的重要性。近期,由于扩散模型在图像和视频生成方面展现出了卓越的性能,已成为一种重要的技术。在本文中,我们介绍了DiffuEraser,这
- 一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
struggle2025
人工智能数据挖掘目标检测深度学习自然语言处理语言模型集成学习
一、GenBIAI代理介绍(文末提供下载)github地址:https://github.com/Canner/WrenAI本文信息图片均来源于github作者主页在WrenAI,我们的使命是通过生成式商业智能(GenBI)使组织能够无缝访问数据,从而彻底改变商业智能。我们的目标是通过先进的AI驱动型解决方案、可组合数据框架和语义智能来打破数据洞察的障碍,使每个团队成员都能自信地做出更快、更智能的
- AI在虚拟试衣中的应用:革新在线购物体验
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟试衣中的应用:革新在线购物体验关键词:虚拟试衣,增强现实,在线购物,深度学习,图像识别,人工智能,用户交互1.背景介绍1.1问题由来随着电子商务的迅猛发展,在线购物已经成为人们日常生活的一部分。然而,由于无法亲身试穿,在线购物体验在满足用户个性化需求方面仍存在诸多不足。传统的网页图片展示和文字描述难以真实传达衣物的质地、颜色和尺寸。因此,虚拟试衣技术应运而生,成为电商平台上提升用户体验的
- 【Golang】——Gin 框架与数据库集成详解
Linke-
Golanggolanggin数据库后端开发语言go
文章目录1.引言2.初始化项目2.1创建Gin项目2.2安装依赖3.数据库驱动安装与配置3.1配置数据库3.2连接数据库3.3在主函数中初始化数据库4.定义数据模型4.1创建用户模型4.2自动迁移5.使用GORM进行CRUD操作5.1创建用户5.2获取用户列表5.3更新用户信息5.4删除用户5.5路由配置6.数据库迁移与管理6.1数据迁移6.2手动迁移7.使用事务处理复杂操作8.优化与调试8.1数
- 做性能测试时,导入locust类库时,报错ValueError: path is on mount 'E:', start on mount 'C:'
菜鸟和大白谁厉害
错误集锦
一、报错信息:CollectinglocustUsingcachedhttps://files.pythonhosted.org/packages/46/2e/18d4e363e76ec8f407ed018594f474d5669b3bca3977c4c664940fff95d5/locust-0.0.tar.gzCollectinglocustio(fromlocust)Usingcachedh
- 玩转Docker | 使用Docker部署SSCMS内容管理系统
心随_风动
玩转Dockerdocker容器运维
玩转Docker|使用Docker部署SSCMS内容管理系统前言一、项目介绍SSCMS简介主要特点二、系统要求环境要求环境检查Docker版本检查检查操作系统版本三、部署SSCMS系统下载镜像创建容器检查容器状态检查服务端口安全设置四、访问SSCMS应用初始化配置访问SSCMS管理后台六、配置SSCMS站点创建站点配置站点信息访问站点首页七、总结前言在当今数字化快速发展的时代,拥有一个高效、稳定且
- .NET使用C#设置Excel单元格数值格式
.netc#excel数字表格
设置Excel单元格的数字格式是创建、修改和格式化Excel文档的关键步骤之一,它不仅确保了数据的正确表示,还能够增强数据的可读性和专业性。正确的数字格式可以帮助用户更直观地理解数值的意义,减少误解,并且对于自动化报告生成、财务计算等应用场景来说,精确的格式控制也是保证数据准确性和一致性的重要保障。在.NET平台上,我们可以使用C#轻松完成Excel单元格的数字格式设置,实现自动化处理。本文将介绍
- 试了下Cursor,感觉程序员工种危险了
java
大家好,我是汤师爷~今年8月份,AI编程工具Cursor在开发者社区彻底火了。在Twitter平台上,Cloudflare副总裁分享了一段视频,展示了一个令人震惊的案例。他年仅8岁的女儿,仅用CursorAI这款工具,在短短45分钟内,就成功构建了一个功能完整的聊天机器人。最近,另一个案例进一步证实了AI编程的潜力。内容创作者、UP主@AI进化论-花生,完全没有编程经验,仅凭CursorAI编程工
- 《解锁AI黑科技:数据分类聚类与可视化》
程序猿阿伟
人工智能科技分类
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- 《数据可视化新高度:Graphy的AI协作变革》
程序猿阿伟
信息可视化人工智能数据分析
在数据洪流奔涌的时代,企业面临的挑战不再仅仅是数据的收集,更在于如何高效地将数据转化为洞察,助力决策。Graphy作为一款前沿的数据可视化工具,凭借AI赋能的团队协作功能,为企业打开了数据协作新局面,重新定义了团队在数据领域的协同方式。智能角色分配,适配专长促协作Graphy利用AI算法,根据团队成员过往在数据项目中的表现、技能标签以及参与任务的类型,分析出每个成员在数据可视化流程中的优势。比如,
- ECharts 样式设置
lsx202406
开发语言
ECharts样式设置引言ECharts是一款功能强大的可视化库,广泛用于数据可视化。样式设置是ECharts中的重要一环,它能够帮助开发者根据需求调整图表的视觉效果,使其更加美观和易于理解。本文将详细介绍ECharts的样式设置,包括主题、颜色、字体、布局等方面的内容。1.ECharts主题ECharts提供了多种主题,用户可以根据自己的喜好和需求选择合适的主题。主题包括:默认主题:这是ECha
- open3d踩雷避坑(运行不了又不报错)
yuyuyue249
python
2024.9.13:open3d的这个问题,折磨了我一整晚+一早上,直到我看到了github的一个issue问题描述:我安装open3d直接:pipinstallopen3d但是学到一半发现运行部分代码问题描述:open3d不出可视化pcd,也不报错只出现:进程已结束。。。。。什么的如下:进程已结束,退出代码为-1073741819(0xC0000005)可能是numpy版本不对!!!!那我直接就
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- 银河麒麟系统V10(arm版)离线安装docker说明
爱T小毛驴
docker容器运维
#银河麒麟系统docker环境#随着2024年微软全球蓝屏事件的出现,系统安全越来越重要。目前很多企业开始尝试国产化操作系统上,但是很多软件依赖和环境总是会出现各种问题,比如安装了a软件,发现却b依赖,安装了b依赖又缺其他依赖。本文介绍如何在国产化银河麒麟系统V10(arm)版上安装docker。Docker是一组平台即服务(PaaS)的产品。它基于操作系统层级的虚拟化技术,将软件与其依赖项打包为
- 数据挖掘常用算法优缺点分析
天波烟客00
数据挖掘数据挖掘机器学习
领取机器学习视频教程:http://www.admin444.com/P-c8129a48常用的机器学习、数据挖掘方法有分类,回归,聚类,推荐,图像识别等。在实际应用中,一般都是采用启发式学习方式来实验。偏差&方差偏差:描述的是预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。偏差bias其实是模型太简单而带来的估计不准确的部分---欠拟合方差:描述的是预测值的变化范围、离散程度
- 使用 Python 的 LSTM 进行股市预测
无水先生
数据分析深度学习人工智能综合pythonlstm开发语言
目录一、说明二、为什么需要时间序列模型?三、下载数据3.1从Alphavantage获取数据3.1从Kaggle获取数据3.3数据探索3.4数据可视化四、将数据拆分为训练集和测试集五、数据标准化六、通过平均进行一步预测6.1标准平均值6.2指数移动平均线6.3如果指数移动平均线这么好,为什么还需要更好的模型?6.4预测未来不止一步七、LSTM简介:预测未来的股票走势7.1数据生成器7.2数据增强7
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 好用的跨语言搜索引擎推荐
2401_89759569
搜索引擎
互联网时代的到来使得获取信息变得前所未有的便捷。然而,语言障碍一直是全球信息交流的一个显著障碍。跨语言搜索引擎应运而生,帮助用户跨越语言的障碍,获取更多元的知识。今天,我将介绍一些好用的跨语言搜索引擎,并详细解读其中的一个——大同搜索。1.大同搜索:中英文内容的桥梁大同搜索(https://datong.info)是一款支持跨语言搜索的智能搜索引擎,能够同时搜索中英文内容,并提供高质量的搜索结果。
- 【技海登峰】Kafka漫谈系列(一)Kafka服务集群的核心组件
阿阿阿安
【独家专栏】知识星球同步专享优质好文kafka分布式java
【技海登峰】Kafka漫谈系列(一)Kafka服务端的核心组件一.Broker完整的Kafka服务是集群Cluster结构,其由多个Kafka服务节点组成,每个物理节点即称为Broker,在实际部署中,每个Broker节点都是一个Kafka实例的服务进程。Broker是Kafka实际的运行单元,负责请求处理、数据同步、存储主题/分区/消费偏移量等元数据信息,多个Broker分布式部署在不同机器上,
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- 新浪微博签到数据集可视化系列(一):数据介绍
雪山青木
微博数据爬取新浪微博python爬虫
微博签到是指用户在发布微博内容的同时标记自身位置的行为。微博签到数据不仅反映了用户在特定时间的所处位置,还能体现其活动轨迹、兴趣偏好以及与周围环境的互动关系,具有高频性、实时性等特征,以及蕴含丰富的时间、空间和语义等多维信息,在社会科学、地理信息科学、城市研究、市场营销等领域应用广泛。微博签到数据主要由用户信息、地点(POI)信息与签到微博信息三部分组成,有用户昵称、性别、生日、注册地、IP归属地
- Python 包管理工具 pip - pip 镜像源(临时使用镜像源、查看当前镜像源、设置当前镜像源)
我命由我12345
Python进阶开发pythonpip开发语言python3.11pycharm后端后端开发
pip1,pip是Python的包管理工具,全称为PipInstallsPackagespip管理ython的包,包括,安装包、升级包、卸载包、查看已安装的包等如果使用的是Python3.4及以上版本,pip通常已经默认安装在命令行中执行指令pip--version,如果已安装,系统会显示pip的版本信息pip镜像源1、基本介绍在使用pip安装Python包时,默认的源服务器可能因网络问题导致下载
- 在 Ubuntu 下通过 Docker 部署 PSQL 服务器
明 庭
服务器ubuntudocker
嗨,各位技术爱好者!今天我们要聊的是如何在Ubuntu系统中通过Docker部署PostgreSQL(简称PSQL)服务器。对于那些还不熟悉Docker和PSQL的小伙伴,Docker是一个开源的容器化平台,可以让你轻松构建、部署和管理应用。而PostgreSQL是一个功能强大的开源关系数据库管理系统,以其稳定性和强大的功能而闻名。Docker和PSQL简介Docker:通过容器技术,Docker
- npm、cnpm、yran、pip、django命令查询、安装、删除、更新及运行、打包汇总积累
亲,你有多少时间可以重来
前端npm前端node.js
npm、cnpm、yran这三个命令,不同的项目适合不同的命令,原因未知。精通一种我觉得就行了。npm命令的安装、删除、更新常见命令汇总了一下:1.查看当前npm信息:npm-v2.查看当前npm信息返回https://registry.npmjs.org/npmconfiggetregistry3.更换当前的镜像源,用淘宝或者华为要快不少。npmconfigsetregistryhttp://r
- kotlin 简介
Channing Lewis
计算机科学kotlin开发语言android
Kotlin是一种现代化、跨平台的编程语言,由JetBrains开发,并于2011年首次发布。它可以用于多种开发场景,包括Android应用开发、后端服务开发、Web开发,以及跨平台应用开发。以下是对Kotlin的核心介绍:Kotlin的特点简洁性:Kotlin相比Java代码更加简洁,许多冗余代码被省略,例如不需要手动写getter/setter。提供许多内置函数和工具,比如NullSafety
- 使用Elasticsearch和SelfQueryRetriever实现智能电影检索
hgSdaegva
elasticsearchjenkins大数据python
在当今信息爆炸的时代,快速而准确地检索数据变得尤为重要。Elasticsearch是一个强大的分布式搜索和分析引擎,能够高效地处理大量数据。在这篇文章中,我们将结合Elasticsearch和SelfQueryRetriever,展示如何通过语言模型实现智能电影查询。技术背景介绍Elasticsearch提供多租户能力和无模式的JSON文档存储,广泛应用于全文搜索和分析场景。通过将其与语言模型结合
- 使用 ChatPremAI 和 LangChain 构建高级聊天模型功能
hgSdaegva
python
##使用ChatPremAI和LangChain构建高级聊天模型功能###技术背景介绍随着生成式AI的快速发展,诸如ChatGPT等大型语言模型逐渐成为开发智能应用的核心组件。然而,如何高效利用这些模型,并将其部署到生产环境中,仍然是开发者面临的一大挑战。ChatPremAI是一款整合所有核心功能的生成式AI平台,通过与LangChain的完美结合,为开发者提供了灵活且功能强大的接口以实现复杂功能
- Qpython+Flask监控添加发送语音中文信息功能
eybk
flaskpython后端
对Qpython+Flask实现对小孩学习的监控-CSDN博客中html页面进行改造,利用Ajax,提交一段文字,发送到数据库,再在服务器,发送该段文件给手机端,然手机端TTS朗读出来,增加了父母监控小孩学习,自定义提醒小孩的功能。一、index.html的更改。实时**学习情况图//设置定时器,每20秒(20000毫秒)刷新一次页面setInterval(function(){location.
- Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
2301_79306982
ai千问语言模型人工智能
关于数据库和检索方式的选择AIMedicalConsultantforVisualQuestionAnswering(VQA)系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在VQA场景中,你需要对患者上传的图像或文本症状进行语义向量化,以便快速查找相似病例或相关医学图像内容;同时用关系型数据库维护患者基础信息和简单的交互记录即可。AI-Power
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$