hadoop解决数据倾斜的方法

分析&回答

1,如果预聚合不影响最终结果,可以使用conbine,提前对数据聚合,减少数据量。使用combinner合并,combinner是在map阶段,reduce之前的一个中间阶段,在这个阶段可以选择性的把大量的相同key数据先进行一个合并,可以看做是local reduce,然后再交给reduce来处理。

2,使用2次mr的方式。第一次mr,在map输出是给key加上一个前缀,则可以把相同的key分配到不同的reduce聚合,可以实现同一个key数据量大的问题;第二次mr对把第一次mr输出的数据的key去掉前缀,在聚合。

3,增加reduce个数,提示并行度。最容易造成的结果就是大量相同key被partition到一个分区,从而一个reduce执行了大量的工作,而如果我们增加了reduce的个数,这种情况相对来说会减轻很多,毕竟计算的节点多了,就算工作量还是不均匀的,那也要小很多。

4,自定义分区,自定义散列函数,把数据均匀分配到不同reduce。

喵呜面试助手:一站式解决面试问题,你可以搜索微信小程序 [喵呜面试助手] 或关注 [喵呜刷题] -> 面试助手 免费刷题。如有好的面试知识或技巧期待您的共享!

你可能感兴趣的:(大数据,hadoop,大数据,hdfs)