- 【人工智能之深度学习】1. 深度学习基石:神经元模型与感知机的数学本质(附代码实现与收敛性证明)
AI_DL_CODE
人工智能之深度学习人工智能深度学习神经元模型感知机赫布法则深度学习基础线性可分
摘要:作为深度学习的基础单元,神经元模型与感知机承载着从生物智能到人工神经网络的桥梁作用。本文从生物神经元的工作机制出发,系统剖析数学建模过程:详解赫布法则的权重更新原理(Δwi=η·xi·y),推导McCulloch-Pitts神经元模型的数学表达(y=Θ(∑wixi−b)),重点证明感知机在linear可分情况下的收敛性——通过Novikoff定理严格推导迭代次数上界,揭示间隔γ对收敛速度的影
- 女性职业新趋势:揭秘未来高薪热门行业
氧惠爱高省
女生在职业选择上拥有广阔的空间,尤其是在当前快速发展的社会背景下,一些行业不仅成为了高薪热门,还提供了多样化的职业路径。以下是一些可能成为女生高薪热门选择的行业:➤推荐网购返利app“氧惠”,一个领隐藏优惠券+现金返利的平台。氧惠只提供领券返利链接,下单全程都在淘宝、京东、拼多多等原平台,更支持抖音、快手电商、外卖红包返利等。科技与互联网行业人工智能与大数据:随着人工智能和大数据技术的广泛应用,相
- 深度学习在环境感知中的应用:案例与代码实现
让机器学会“看”世界:深度学习如何赋能环境感知?关键词深度学习|环境感知|计算机视觉|传感器融合|语义分割|目标检测|自动驾驶摘要环境感知是机器与外界互动的“眼睛和耳朵”——从自动驾驶汽车识别行人,到智能机器人避开障碍物,再到城市监控系统检测异常,所有智能系统都需要先“理解”环境,才能做出决策。传统环境感知方法依赖手工特征提取,难以应对复杂场景;而深度学习通过数据驱动的方式,让机器从大量数据中自动
- 实现分布式锁
在黑马点评项目中,在实现分布式锁的时候提到了实现的几种方式,本文来简单了解一下。一、MySQL、Redis、ZooKeeper是不是都是“数据库”?严格来说,三者的定位和功能差异很大,但广义上都可以视为“数据存储系统”,不过它们的核心设计目标和适用场景完全不同。我们可以从“数据模型”和“核心用途”两个维度区分:类型MySQLRedisZooKeeper核心定位关系型数据库(OLTP,事务型存储)内
- 自编码器表征学习:重构误差与隐空间拓扑结构的深度解析
码字的字节
机器学习自编码器重构误差隐空间
自编码器基础与工作原理自编码器(Autoencoder)作为深度学习领域的重要无监督学习模型,其核心思想是通过模拟人类认知过程中的"压缩-解压"机制实现数据的表征学习。这种由GeoffreyHinton团队在2006年复兴的神经网络结构,本质上是一个试图通过编码-解码过程来复制其输入的系统,却在实现这一看似简单目标的过程中,意外地获得了强大的特征提取能力。基本架构与工作流程典型自编码器由对称的两部
- 高斯混合模型(GMM)中的协方差矩阵类型与聚类形状关系详解
码字的字节
机器学习机器学习人工智能高斯混合模型GMM
高斯混合模型(GMM)简介高斯混合模型(GaussianMixtureModel,GMM)是概率统计与机器学习交叉领域的重要模型,其核心思想是通过多个高斯分布的线性组合来描述复杂数据分布。与单一高斯分布不同,GMM能够捕捉数据中的多模态特性,这使得它在处理真实世界非均匀分布数据时展现出独特优势。从数学形式上看,一个包含K个分量的GMM可表示为:其中(\pi_k)是第k个高斯分量的混合系数(满足(\
- XML数据如何进行解析呢,方式有哪些?
张起灵的小可爱啊
上回我们说到JSON解析的四种方式,那么这次我们来看看XML的四种解析方式。解析的四种方式DOM解析SAX解析JDOM解析DOM4J解析案例实操DOM解析DOM(DocumentObjectModel,文档对象模型),在应用程序中,基于DOM的XML分析器将一个XML文档转换成一个对象模型的集合(通常称为DOM树),应用程序正是通过对这个对象模型的操作,来实现对XML文档数据的操作。XML本身是以
- 数据仓库是什么,一文读懂数据仓库设计步骤
Leo.yuan
数据数据仓库大数据人工智能数据库信息可视化
目录一、数据仓库:干啥用的?1.数据仓库是啥?2.数据仓库有啥大用?二、设计之前:准备啥?1.搞清楚业务要啥2.摸清数据家底3.划好仓库边界三、概念设计:搭框架1.定好主题域2.分清维度和事实3.画出概念模型四、逻辑设计:定细节1.设计维度表和事实表2.想好怎么存数据3.定好安全规矩五、物理设计:落地实施1.选好数据库软件2.优化数据库性能3.部署上线六、实施与测试:跑起来1.ETL:灌数据2.全
- python JSON Lines (JSONL)的保存和读取;jsonl的数据保存和读取,大模型prompt文件保存常用格式
医学小达人
常用算法NLPpromptJSONLinesJSONLjsonljsonl文件保存读取
1.JSONLines(JSONL)文件保存将一个包含多个字典的列表保存为JSONLines(JSONL)格式的文件,每个字典对应一个JSONL文件中的一行。以下是如何实现这一操作的Python代码importjson#定义包含字典的列表data=[{"id":1,"name":"Alice","age":30,"email":"
[email protected]"},{"id":2,"name"
- 基于YOLOv8的Web端交互式目标检测系统设计与实现
YOLO实战营
YOLO前端目标检测人工智能ui目标跟踪计算机视觉
1.引言目标检测是计算机视觉领域的一项重要任务,它在安防监控、自动驾驶、医疗影像分析等领域有着广泛的应用。近年来,随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列算法因其出色的速度和精度平衡而备受关注。本文将详细介绍如何基于最新的YOLOv8模型构建一个Web端交互式目标检测系统,包含完整的UI界面设计和数据集处理流程。本系统将实现以下功能:基于YOLOv8的高效目标检测
- 交错并联Buck+LLC变换器的建模与控制优化研究
交错并联Buck+LLC变换器的建模与控制优化研究前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。摘要本文针对宽输入电压范围(200-450V)、多电压输出(12-48V)的高效DC-DC变换系统,提出了一种基于交错并联Buck预调节器和LLC谐振变换器的两级式拓扑结构。中间母线电压设定为200V,系统输出功率为1500W,要求电压和
- 基于卷积神经网络与小波变换的医学图像超分辨率算法复现
神经网络15044
python算法cnn算法人工智能图像处理开发语言神经网络深度学习
基于卷积神经网络与小波变换的医学图像超分辨率算法复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言医学图像超分辨率技术在临床诊断和治疗规划中具有重要意义。高分辨率的医学图像能够提供更丰富的细节信息,帮助医生做出更准确的诊断。近年来,深度学习技术在图像超分辨率领域取得了显著进展。本文将复现一种结合卷积神经网络(CNN)、小波变
- 使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现
神经网络15044
算法python分类矩阵人工智能数据挖掘深度学习
使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景实例分割是计算机视觉领域的重要任务,它要求模型不仅要检测图像中的对象,还要精确地分割出每个对象的像素级掩码。近年来,基于Transformer的模型在实例分割任务上取得
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- 深度学习系列----->环境搭建(Ubuntu)
二师兄用飘柔
深度学习历程深度学习ubuntu人工智能pytorchpython
1、前言电脑基础系统硬件情况:系统:ubuntu18.04、显卡:GTX1050Ti;后续的环境搭建都在此基础上进行。此次学习选择Pytorch作为深度学习的框架,选择的原因主要由于PyTorch在研究领域特别受欢迎,较多的论文框架也是基于其开发。2、anaconda+python3安装测试在学习深度学习的过程中会涉及到使用不同版本python包的问题,而anaconda可以便捷获取包且对包能够进
- 「2022青创繁星跨年大课复盘05」创业路上,不懂这个思考方法,也许会耗费你很多时间精力!
米娅成长日记
“我们面临的局面不是缺少思想,而往往是缺乏对思想的实施。对于每一个得到实施的思想,都有成千上万个思想未能得到贯彻落实。”——FredmundMalik《管理成就生活》理念想法再好,没有执行就等于零!!道理谁都懂,其实很多人总是选择等待,然后错失机会~“四位一体”的稳赢思考模型中,有基于时代的策略分析、战略分析以及组织设计,这3个思考点非常重要,但其终归都属于想法层面的,它们只是脑中“蓝图”。蓝图设
- 深度学习-常用环境配置
瑶山
AIlinux人工智能windowsCUDAPyTorch
目录Miniconda安装安装NVIDIA显卡驱动安装CUDA和cnDNNCUDAcuDNNPyTorch安装手动下载测试Miniconda安装最新版Miniconda搭建Python环境_miniconda创建python虚拟环境-CSDN博客安装NVIDIA显卡驱动直接进NVIDIA官网:NVIDIAGeForce驱动程序-N卡驱动|NVIDIA在这里有GeForce驱动程序,立即下载,这是下
- 059|不问为什么而做,都是在“行尸走肉”
独行侠i
今天做的有价值的成果?1.学习Tom教练的目标管理课程,内容接地气,精髓,但延伸得有点少。2.雍湖湾外框模型基本成形,小有成就,不错!3.即看即讲《习惯人生》,自己老是把牛跟马混淆。上菜!反思有时候会给自己盲目的定下许许多多的目标,亦或者觉得应该定目标,但定目标的背后我们都少有去思考一个问题,为什么而做?举个栗子今天上边这张图是我昨晚上给今天的自己定的小目标,里边第1条是“幕布梳理知识”,但其实我
- Embedding与向量数据库
玖月初玖
大模型应用开发基础人工智能embedding数据库
1.Embedding是什么EmbeddingModel是一种机器学习模型,它的核心任务是将离散的、高维的符号(如单词、句子、图片、用户、商品等)转换成连续的、低维的向量(称为“嵌入”或“向量表示”),并且这个向量能有效地捕捉原始符号的语义、关系或特征。1.1通俗理解EmbeddingModel是让计算机“理解”世界的核心工具,把“文字、图片、音频”等信息变成一串有意义的数字我们称之为“向量”。类
- python分布式事务_分布式事务系列(2.1)分布式事务的概念
#1系列目录#2X/OpenDTPDTP全称是DistributedTransactionProcess,即分布式事务模型。之前我们接触的事务都是针对单个数据库的操作,如果涉及多个数据库的操作,还想保证原子性,这就需要使用分布式事务了。而X/OpenDTP就是一种分布式事务处理模型。##2.1X/OpenDTP模型X/Open是一个组织,维基百科上这样说明:X/Open是1984年由多个公司联合创
- 【提示词优化技巧】利用大模型进行提示词自优化
weixin_37763484
大模型人工智能
看到一篇帖子,里面记录了如下的提示词优化技术,我使用ai进行了解读。整体来看,这个方法非常合理,能减少人工干预,值得试一试。原始方法如下:1.主题:构建高效Prompt的系统化流程:一种元提示工程方法在与大型语言模型(LLM)的交互中,提示词(Prompt)的质量直接决定了输出的上限。传统的Prompt撰写高度依赖工程师的经验和直觉,缺乏一套系统化的构建与优化流程,导致效率瓶颈和质量波动。本文提出
- 从0构建 HarmonyOS 本地语音识别项目:Whisper 完整落地教程
观熵
国产大模型部署实战全流程指南harmonyos语音识别whisper深度学习机器学习
第一章:鸿蒙手机语音识别项目实战(基于Whisper本地推理)项目目标:构建一个可以在鸿蒙系统手机本地运行的语音识别应用,使用Whisper模型识别用户语音为文字,全程无需联网。1.为什么要在鸿蒙手机本地部署语音识别?在很多移动场景下(驾驶、弱网环境、隐私敏感场景等),云端语音识别存在如下痛点:⏳网络延迟高、体验割裂⚠️数据隐私风险大网络依赖强,弱网/无网直接无法使用而将语音识别模型部署在鸿蒙设备
- 网络参考模型以及各层对应的协议
窗外千纸鹤
网络网络网络协议
网络参考模型在互联网中实际使用的是TCP/IP参考模型。实际存在的协议主要包括在:物理层、数据链路层、网络层、传输层和应用层。各协议也分别对应这5个层次而已。【1】物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换),这一层的数据叫做
- 如何构建高效的向量数据库以优化大模型检索能力
学习ing1
数据库
1.构建向量数据库的基础架构1.1确定数据存储需求构建高效的向量数据库以优化大模型检索能力,首先要明确数据存储需求。大模型通常涉及海量的参数和数据,例如一个拥有10亿参数的模型,其存储需求可能达到数百GB。根据数据的规模和类型,需要确定存储的容量、速度和可靠性。对于大规模数据,分布式存储是常见的选择,它可以将数据分散存储在多个节点上,提高存储效率和数据访问速度。同时,数据的读写频率也是重要因素,高
- LLM初识
从零到一:用Python和LLM构建你的专属本地知识库问答机器人摘要:随着大型语言模型(LLM)的兴起,构建智能问答系统变得前所未有的简单。本文将详细介绍如何使用Python,结合开源的LLM和向量数据库技术,一步步搭建一个基于你本地文档的知识库问答机器人。你将学习到从环境准备、文档加载、文本切分、向量化、索引构建到最终实现问答交互的完整流程。本文包含详细的流程图描述、代码片段思路和关键注意事项,
- 大模型——TRAE+Milvus MCP 自然语言就能搞定向量数据库
不二人生
大模型milvus数据库trae大模型
大模型——TRAE+MilvusMCP自然语言就能搞定向量数据库不久前,继Cursor和ClaudeDesktop在海外市场掀起智能编程浪潮后,字节跳动TRAE海外版也进入了付费模式。相较前两款海外产品,TRAE集成了代码补全、智能问答和Agent模式之外,还可以为中文开发者带来本土化的智能编程体验。恰逢其时,MilvusMCP服务器新增了SSE(Server-SentEvents)支持。相比传统
- 大语言模型:人像摄影的“达芬奇转世”?——从算法解析到光影重塑的智能摄影革命
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
导言在摄影术诞生之初,达芬奇或许无法想象,他对于光影、比例和解剖的严谨研究,会在数百年后以另一种形式重生。今天,当摄影师面对复杂的光线环境或苦苦寻找最佳构图时,一位由代码构筑的“光影军师”正悄然降临——大语言模型(LLM)正以前所未有的方式,重塑人像摄影的创作边界。解构经典:大语言模型如何“消化”百年摄影智慧大语言模型并非凭空创造建议,其根基在于对海量摄影知识体系的深度理解与结构化重组。理论内化:
- 【速通RAG实战:数据库】6.RAG向量数据库原理
无心水
速通RAG实战!解锁AI2.0高薪密码速通RAG实战RAG快速开发实战RAGRAG向量数据库相似度FAISSChroma
在RAG(检索增强生成)系统中,向量数据库扮演着至关重要的角色,它负责存储文本经过Embedding处理后的向量表示,并能高效地进行向量检索,以找出与查询向量最相似的文档。1.向量数据库原理1.向量表示在RAG系统里,文本首先会通过Embedding模型(如OpenAIEmbeddings、SentenceTransformers等)转化为固定维度的向量。这些向量能够捕捉文本的语义信息,使得语义相
- LangChain4j入门:Java开发者的AI应用开发指南
半夜偷你家裤衩子
LangChain4jjava人工智能开发语言LangChain4j
在AI浪潮席卷全球的今天,Java开发者如何快速上手大语言模型应用开发?LangChain4j为我们提供了完美的解决方案!前言:为什么Java开发者需要LangChain4j?想象一下,你正在开发一个企业级应用,需要集成ChatGPT来提供智能客服功能。传统方式需要直接调用OpenAIAPI,处理复杂的HTTP请求、错误重试、上下文管理等问题。而使用LangChain4j,几行代码就能搞定:Cha
- 深入解析部分可观测马尔可夫决策过程(POMDP)及其应用
码字的字节
算法人工智能马尔可夫决策过程POMDP
POMDP的基本概念与模型部分可观测马尔可夫决策过程(PartiallyObservableMarkovDecisionProcess,POMDP)是强化学习领域中处理不完全信息环境的核心数学模型。与完全可观测的马尔科夫决策过程(MDP)相比,POMDP更贴近现实世界中智能体面临的感知局限,其核心特征在于系统状态无法被直接观测,智能体必须通过间接的观测信号来推断潜在状态。POMDP的七元组模型PO
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比