- Text2SQL的三种实现方法
AI科技分享
算法线性回归回归深度学习rnn
传统BI工具通常分为数据接入层、分析工具层和基于该工具平台的各种行业应用层面,大模型可以在这些环节发挥作用。在数据处理层面,大模型可以帮助传统的ETL过程简化难度,提高实时交互效率。在数据分析层面,大模型可以替代拖拽交互方式,让业务用户用更简单、更高效的方式以自然语言形式与底层数据交互,构建需要的报表和看板。在行业应用层面,大模型可以真正发挥对行业知识的理解能力,与具体数据结合,形成具针对客户、特
- 【TVM 教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在ifname=="__main__":代码块中。importosi
- AI Agent:一场智能革命的开始
TechubNews
人工智能
在当今科技日新月异的时代,AI(人工智能)技术正以前所未有的速度改变着我们的生活和工作方式。其中,AIAgent作为AI领域的一个新兴分支,正逐渐展现出其巨大的潜力和价值。本文将深入探讨AIAgent的发展现状、核心优势以及未来的发展方向,带您领略这一前沿技术的无限魅力。一、AIAgent的发展现状:技术突破与广泛应用近年来,随着大数据、云计算和机器学习等技术的飞速发展,AIAgent的技术水平得
- 不得不了解的高效AI办公工具API
程序员
AI办公,即人工智能在办公领域的应用,是指利用人工智能技术来提高工作效率、优化工作流程、增强决策支持等。AI公文写作:AI公文写作API服务通过智能算法,根据用户需求快速生成标准化的公文文本,如报告、通知、请示等,提高工作效率。TaskadeAPI:TaskadeAPI可以帮助开发人员将Taskade集成到他们的自定义应用程序和工具中,以实现更高效、更协同的团队协作。PDF.aiAPI:PDF.a
- 日期和时间数据类型的深入探讨:理论与实践
title:日期和时间数据类型的深入探讨:理论与实践date:2025/1/3updated:2025/1/3author:cmdragonexcerpt:日期和时间数据类型在数据库管理系统中扮演着重要角色,尤其是在数据分析、时间序列数据和事件追踪等领域。这些数据类型不仅可以准确表示时间信息,还能在信息检索、数据存储和计算功能上发挥重要作用。categories:前端开发tags:日期和时间数据库
- HTTP与HTTPS的区别
楠哥学IT
网络协议httpshttp协议网络网络协议
HTTP与HTTPS的区别一:HTTP与HTTPS有哪些区别?二:HTTPS解决了HTTP的哪些问题?三:HTTPS是如何解决上面的三个风险的?(1)混合加密(2)摘要算法(3)数字证书四、HTTPS是如何建立连接的?其间交互了什么?1、ClientHello:2、SeverHello3、客户端回应4、服务器的最后回应一:HTTP与HTTPS有哪些区别?(1)HTTP是超文本传输协议,信息是明文传
- 第79期 | GPTSecurity周报
aigcgpts
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.TrojanWhi
- 国产替代 | 星环科技Sophon替代SAS,助力大型国有银行智能化营销
数据挖掘
分布式架构的|国产智能分析工具在银行交易中,20%的头部优质客户会给银行贡献80%的利润,而赢得一个新客户的成本是保留一个老客户的5至6倍。某大型国有银行在面临此类数据挖掘的业务时,使用的是SAS产品。由于SAS是集中式的,对单台服务器要求太高,算力无法支撑需求,且无法支持可视化的机器学习,对于业务人员来说使用门槛过高。在经过产品选型后,决定采用星环科技的智能分析工具Sophon替换原有SAS,用
- .NET用C#导入Excel到数据库
将Excel文件中的数据导入到数据库中不仅能够提升数据处理的效率和准确性,还能极大地促进数据分析和决策制定的过程。尤其在企业级应用中,Excel作为数据输入和初步整理的工具非常普遍,但其功能对于复杂查询、大规模数据管理和跨部门的数据共享来说有所局限。通过使用C#在.NET平台上实现这一过程,可以充分利用其强大的数据操作能力和丰富的库支持,确保数据从Excel无缝迁移到诸如SQLite等关系型数据库
- 交叉熵损失与二元交叉熵损失:区别、联系及实现细节
专业发呆业余科研
深度模型底层原理人工智能深度学习python
在机器学习和深度学习中,交叉熵损失(Cross-EntropyLoss)和二元交叉熵损失(BinaryCross-EntropyLoss)是两种常用的损失函数,它们在分类任务中发挥着重要作用。本文将详细介绍这两种损失函数的区别和联系,并通过具体的代码示例来说明它们的实现细节。交叉熵损失(Cross-EntropyLoss)常用于多类分类问题,即每个样本只能属于一个类别,但总类别数量较多。例如,在手
- KDD 2024 | 美团技术团队精选论文解读 & 论文分享会预告
美团机器学习深度学习
ACMSIGKDD(KnowledgeDiscoveryandDataMining,简称KDD)是数据挖掘领域的国际顶级会议。KDDCup比赛是由SIGKDD主办的数据挖掘研究领域的国际顶级赛事,从1997年开始,每年举办一次,是目前数据挖掘领域最有影响力的赛事。本文精选了美团技术团队被KDD2024收录的5篇长文进行解读,覆盖了用户意图感知、机器学习&运筹优化、在线控制实验、联合广告模型、实时调
- 轨迹优化 | 基于贝塞尔曲线的无约束路径平滑与粗轨迹生成(附ROS C++/Python仿真)
Mr.Winter`
运动规划实战进阶:轨迹优化篇人工智能机器人ROSROS2自动驾驶轨迹优化几何学
目录0专栏介绍1从路径到轨迹2基于贝塞尔曲线的粗轨迹生成2.1路径关键点提取2.2路径点航向角计算2.3贝塞尔曲线轨迹生成3算法仿真3.1ROSC++仿真3.2Python仿真0专栏介绍课设、毕设、创新竞赛必备!本专栏涉及更高阶的运动规划算法轨迹优化实战,包括:曲线生成、碰撞检测、安全走廊、优化建模(QP、SQP、NMPC、iLQR等)、轨迹优化(梯度法、曲线法等),每个算法都包含代码实现加深理解
- 【蓝桥杯】Python算法——快速幂
遥感小萌新
蓝桥杯蓝桥杯算法
零、前言距离25年蓝桥杯还有大概三个月时间,接下来重点应该会放在蓝桥杯备考方向,一起努力,一起加油一、快速幂如何快速求ab=pa^b=pab=p?如果直接循环aaa…毫无疑问时间复杂度是很大的,那么怎么降低计算量呢?快速幂就是从幂运算的性质出发,提出的优化。对于aba^bab,如果b是偶数,则可拆分为ab=ab//2∗ab//2a^b=a^{b//2}*a^{b//2}ab=ab//2∗ab//2
- 力扣240题 搜索二维矩阵 II
跑不动也要跑
力扣leetcode矩阵算法javascript
编写一个高效的算法来搜索mxn矩阵matrix中的一个目标值target。该矩阵具有以下特性:每行的元素从左到右升序排列。每列的元素从上到下升序排列。示例1:输入:matrix=[[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]],target=5输出:true示例2:输入:matrix=[[1,
- 《leetcode-runner》如何手搓一个debug调试器——引言
飞哥不鸽
leetcode-runnerleetcode算法调试器项目架构插件开发开源
文章目录背景仓库地址:leetcode-runner背景最近笔者写了个idea插件——leetcode-runner。该插件可以让扣友在本地刷leetcode,并且leetcode提供的和代码相关的编辑功能该插件都提供,具体演示如下唯一不足的就是代码debug。众所周知,leetcode算法是核心代码模式,想要利用IDE调试,需要自己补充一堆代码,而且每次更换题目,对应的补充代码又得重新写一遍,可
- llama.cpp部署
法号:行颠
机器学习机器学习
llama.cpp介绍部署介绍大模型的研究分为训练和推理两个部分:训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化;推理结果最优化的过程;训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。llama.cpp主要解决的是推理过程中的性能问题。主要有两点优化:llama.cpp使用的是C语言写的机器学习张量库ggmlllama.cpp提供了模型量化的工具计算类
- Kubeflow:云原生机器学习工作流自动化开源框架详解
gs80140
AI基础知识科谱人工智能Kubeflow
Kubeflow是一个开源的机器学习(ML)工作流自动化平台,旨在将机器学习工作流部署到Kubernetes之上,实现从实验到生产的一站式解决方案。它提供了针对容器化机器学习任务的工具链,能够自动化地管理、部署和监控模型的整个生命周期。Kubeflow的核心组件Notebooks(交互式开发环境)支持JupyterNotebooks,通过Kubernetes集群进行计算资源的扩展和管理。Pipel
- 转盘控制算法
catxl313
c++算法
问题一个转盘,上面有N个孔位,在转盘外部有若干个操作组件,每个操作组件都针对其安装位置的孔位进行操作。例如以下是一个有12个孔位的转盘,其11号孔位上方有一个操作组件Op-1,5号孔位上方有一个操作组件Op-2。操作组件不可移动,操作组件在转盘转动时也不可对孔位进行操作。控制转盘转动的常见问题是:(1)如何表示当前转盘的位置?(2)如何计算各操作位下的孔位号?+------------------
- 2025-1-15-十大经典排序算法 C++与python
汤姆和佩琦
C/C++语言学习历程python算法学习排序算法c++python学习算法数据结构
文章目录十大经典排序算法比较排序1.冒泡排序2.选择排序3.插入排序4.希尔排序5.归并排序6.快速排序7.堆排序非比较排序8.计数排序9.桶排序10.基数排序十大经典排序算法十大经典排序算法可以分为比较排序和非比较排序:前者包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序;后者包括计数排序、桶排序、基数排序;下面将详细介绍这些算法:比较排序1.冒泡排序基本思想:重复地走访要
- 全类别机器人传感器模块推荐
极梦网络无忧
杂谈机器人
视觉感知双目视觉模块:常见分辨率1280×720,帧率30fps-60fps,水平视场角60°-90°,垂直视场角40°-60°,通过USB接口传数据。用于机器人导航、避障等,基于三角测量原理获取三维信息,定位更精准。单目摄像头模块:分辨率640×480至2592×1944可选,帧率15fps-60fps,工作电压3.3V-5V。适用于简单图像识别任务,成本低、体积小,结合算法可实现目标检测等功能
- 数仓数据分层(ODS DWD DWS ADS)换个角度看
闻香识代码
大数据数仓数据仓库大数据odsdw
数仓数据分层简介1.背景数仓是什么,其实就是存储数据,体现历史变化的一个数据仓库.因为互联网时代到来,基于数据量的大小,分为了传统数仓和现代数仓.传统数仓,使用传统的关系型数据库进行数据存储,因为关系型数据库本身可以使用SQL以及函数等做数据分析.所以把数据存储和数据分析功能集合为一体,加上一个可视化界面,就能从数据存储,数据分析,数据展示完整方案.到了互联网时代,由于上网用户剧增,特别是移动互联
- 优选算法之双指针(下)
南风与鱼
算法算法优选算法双指针
目录一、有效三角形的个数1.题目链接:611.有效三角形的个数2.题目描述:3.解法一(暴力求解、会超时)算法思路:算法代码:4.解法二(排序+双指针)算法思路:算法代码:二、和为S的两个数1.题目链接:179.查找总价值为目标值的两个商品2.题目描述:3.解法一(暴力解法、会超时)算法思路:算法流程:算法代码:4.解法二(双指针-对撞指针)算法思路:算法流程:算法代码:三、三数之和1.题目链接:
- 代码随想录算法训练营Day2:977有序数组、209长度最小的子数组、59螺旋矩阵||
爱吃甜食的靓仔
算法leetcode数据结构
(1)977有序数组文章链接:代码随想录(programmercarl.com)思考:题目中提到了该数组为有序数组,那么在进行平方后,最大值一定是在数组的最左边或者最左边,所以用双指针进行比较。Java代码:classSolution{publicint[]sortedSquares(int[]nums){int[]result=newint[nums.length];intleft=0;intr
- 层次聚类算法
数小模.
算法数学建模算法聚类机器学习
层次聚类算法是通过将数据组织为若干组并形成一个相应的树来进行聚类。根据层次是自底向上还是自顶向下形成的,层次聚类算法可以进一步分为凝聚型的聚类算法(AGENES)算法和分裂型的聚类(DIANA)算法。一个完全层次聚类的质量由于无法对已经做的合并或分解进行调整而受到影响。但是层次聚类算法没有使用准则函数,它所含的对数据结构的假设更少,所以它的通用性更强。这种自底向上的策略首先将每个对象作为一个簇,然
- 【机器学习:三十一、推荐系统:从基础到应用】
KeyPan
机器学习机器学习人工智能决策树算法深度学习
1.推荐系统概述推荐系统是一种根据用户的兴趣和偏好,为用户提供个性化建议的技术,广泛应用于电子商务、流媒体平台和社交媒体等领域。通过分析用户行为数据,推荐系统可以帮助用户发现他们感兴趣的内容,同时提升平台的用户体验和商业收益。定义与作用推荐系统是一种数据过滤技术,旨在从海量数据中筛选出用户可能感兴趣的信息。它不仅能提升用户的满意度,还能增加平台的转化率和黏性。分类推荐系统主要分为以下三类:基于内容
- 【机器学习:三十、异常检测:原理与实践】
KeyPan
机器学习机器学习人工智能深度学习pytorch神经网络
1.异常检测概述异常检测(AnomalyDetection)是一种用于识别数据中异常模式或异常点的技术,旨在发现与大部分数据行为不同的样本。它在工业监控、网络安全、金融欺诈检测等领域具有广泛应用。异常检测的目标是找到那些偏离正常行为的数据点,这些数据点可能代表错误、故障、攻击或其他需要特别关注的情况。核心概念异常通常分为以下三种类型:点异常:单个数据点显著偏离正常分布(例如,银行交易中突然的巨额消
- 【机器学习:二十九、K-means算法:原理与应用】
KeyPan
机器学习机器学习算法kmeans人工智能神经网络深度学习数据挖掘
1.K-means概述K-means是一种经典的无监督学习算法,广泛应用于数据聚类任务。其核心思想是将数据集划分为kkk个簇,使得每个簇内的样本尽可能相似,同时不同簇之间尽可能不同。K-means的简单性和高效性使其在模式识别、图像处理、市场分析等领域具有广泛应用。核心思想基于欧几里得距离度量数据点之间的相似性。不断优化簇中心位置,最小化簇内样本与其中心点之间的总距离(即误差平方和,SSE)。适用
- 人工智能下的MASS服务架构
从零开始学习人工智能
人工智能架构
人工智能下的MASS服务架构1.MaaS(ModelasaService)概述MaaS(ModelasaService,模型即服务)是一种新型的人工智能服务模式,通过将复杂的AI模型封装为标准化服务,降低了模型的开发和部署门槛,帮助企业快速实现业务场景的智能化升级。2.MaaS的起源与概念MaaS的概念最早由美国数据科学家DJ·帕蒂尔在2012年提出,即“将机器学习算法打包成可重复使用的服务,使企
- T检验:一种通俗易懂的统计分析方法
从零开始学习人工智能
算法人工智能机器学习
摘要T检验(T-test或Student'sT-test)是统计学中用于比较两组数据均值是否存在显著差异的重要工具。本文旨在以通俗易懂的方式介绍T检验的基本概念、类型、数学公式、应用步骤及其在各个领域中的实际应用。引言在科学研究、数据分析等领域,我们经常需要评估两组数据之间的差异是否具有统计学意义。T检验正是为此目的而设计的,它基于T分布理论,通过计算样本数据的T值和P值来推断总体均数之间的差异。
- 十大人工智能公司
雪兽软件
科技前沿人工智能
人工智能(AI)是我们这个时代最具变革性和颠覆性的技术之一,它从最初由少数研究人员和科技巨头涉足的相对小众的领域,发展成为一个价值数十亿美元的产业,吸引着全球各地的投资和人才。随着人工智能的潜力不断激发全球企业家、投资者和企业的想象力,一批新型公司应运而生,它们致力于突破这项技术的边界。在此,我们来探究一下截至2024年5月15日按市值排名前十的人工智能公司,这些公司正在助力塑造人工智能的未来。1
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。