我在看到第二类曲线积分的公式时候,对于其中的正负号很困惑,教材上给出了结论:法线和相对应的坐标轴的夹角为锐角时取“+”,否则取负号。然而,不知道其正负号的根源会让心不得安,因此我稍微探究了一下。
分面投影法:
∬ S F ( x , y , z ) ⋅ d S = ∬ D y z ± P [ x ( y , z ) , y , z ] d y d z + ∬ D x z ± Q [ x , y ( x , z ) , z ] d x d z + ∬ D x y ± R [ x , y , z ( x , y ) ] d x d y \begin{aligned} \iint_S \mathbf F(x,y,z) \cdot d \mathbf S &= \iint_{D_{yz}} \pm P[x(y,z),y,z]dydz + \iint_{D_{xz}} \pm Q[x,y(x,z),z]dxdz + \iint_{D_{xy}} \pm R[x,y,z(x,y)]dxdy \end{aligned} ∬SF(x,y,z)⋅dS=∬Dyz±P[x(y,z),y,z]dydz+∬Dxz±Q[x,y(x,z),z]dxdz+∬Dxy±R[x,y,z(x,y)]dxdy
合一投影法:
∬ S F ( x , y , z ) ⋅ d S = ∬ S F ( x , y , z ) ⋅ n 0 ( x , y , z ) d S = ± ∬ D x y F ( x , y , z ) ⋅ ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) d x d y \begin{aligned} \iint_S \mathbf F(x,y,z) \cdot d \mathbf S &= \iint_{S} \mathbf F(x,y,z) \cdot \mathbf {n_0}(x,y,z) dS \\ &= \pm \iint_{D_{xy}} \mathbf F(x,y,z) \cdot (-\frac{\partial z}{\partial x} ,-\frac{\partial z}{\partial y} ,1)dxdy \end{aligned} ∬SF(x,y,z)⋅dS=∬SF(x,y,z)⋅n0(x,y,z)dS=±∬DxyF(x,y,z)⋅(−∂x∂z,−∂y∂z,1)dxdy
首先,要知道,一个平面的显式表示和隐式表示:
隐式: F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0;
显式: z = z ( x , y ) z = z(x,y) z=z(x,y)。
实际上,显式表示是一种几何学上的参数化,其逆过程是隐式化,可表示为: F ( x , y , z ) = z − z ( x , y ) = z ( x , y ) − z = 0 \color{fuchsia}{F(x,y,z) = z-z(x,y) = z(x,y)-z=0} F(x,y,z)=z−z(x,y)=z(x,y)−z=0
现在在平面上任意找一个点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)
那么,这一点的法向量可以
用梯度表示为: ∇ F ( x , y , z ) \nabla \mathbf F(x,y,z) ∇F(x,y,z);
或者用偏导数的外积表示为: ∂ X ∂ x × ∂ X ∂ y \frac{\partial \mathbf X}{\partial x} \times \frac{\partial \mathbf X}{\partial y} ∂x∂X×∂y∂X或者 ∂ X ∂ y × ∂ X ∂ x \frac{\partial \mathbf X}{\partial y} \times \frac{\partial \mathbf X}{\partial x} ∂y∂X×∂x∂X,这里的X是曲面坐标,比如三维空间里面,使用z(x,y)进行参数化,那么得到的曲面坐标为**(x,y,z(x,y))**。
对于显示表示的平面的法向量,可表示为: n ( x , y ) = ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) \color{fuchsia}{\mathbf n(x,y) = (-\frac{\partial z}{\partial x} ,-\frac{\partial z}{\partial y} ,1) } n(x,y)=(−∂x∂z,−∂y∂z,1) 或者 n ( x , y ) = ( ∂ z ∂ x , ∂ z ∂ y , − 1 ) \color{fuchsia}{\mathbf n(x,y) = (\frac{\partial z}{\partial x} ,\frac{\partial z}{\partial y} ,-1) } n(x,y)=(∂x∂z,∂y∂z,−1),此时法向量的值只和x、y有关
我非常刻意地将法向量写成了两种表示形式,这是因为对于一个有向曲面而言有两侧。现在最关键的两句话是:
1. 若采用z(x,y)进行参数化,其法向量 n ( x , y ) = ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) \mathbf n(x,y) = (-\frac{\partial z}{\partial x} ,-\frac{\partial z}{\partial y} ,1) n(x,y)=(−∂x∂z,−∂y∂z,1)一定是指向天, n ( x , y ) = ( ∂ z ∂ x , ∂ z ∂ y , − 1 ) \mathbf n(x,y) = (\frac{\partial z}{\partial x} ,\frac{\partial z}{\partial y} ,-1) n(x,y)=(∂x∂z,∂y∂z,−1)一定指向地;
1. 若采用z(x,y)进行参数化,一定要保证函数 z = z ( x , y ) z = z(x,y) z=z(x,y)是单值函数。
现在如果我们关注的一片曲面,是一个右半球,那么采用**y(x,z)**进行参数化,更加方便,此时曲面坐标只和x、z有关。那么其其法向量 n ( x , z ) = ( − ∂ y ∂ x , 1 , − ∂ y ∂ z ) \mathbf n(x,z) = (-\frac{\partial y}{\partial x},1,-\frac{\partial y}{\partial z}) n(x,z)=(−∂x∂y,1,−∂z∂y)一定是指向东, n ( x , z ) = ( ∂ y ∂ x , − 1 , ∂ y ∂ z ) \mathbf n(x,z) = (\frac{\partial y}{\partial x},-1,\frac{\partial y}{\partial z}) n(x,z)=(∂x∂y,−1,∂z∂y)一定指向西。
现在如果我们关注的一片曲面,是一个前半球,那么采用**x(y,z)**进行参数化,更加方便,此时曲面坐标只和y、z有关。那么其其法向量 n ( y , z ) = ( 1 , − ∂ x ∂ y , − ∂ x ∂ z ) \mathbf n(y,z) = (1,-\frac{\partial x}{\partial y},-\frac{\partial x}{\partial z}) n(y,z)=(1,−∂y∂x,−∂z∂x)一定是指向南, n ( y , z ) = ( − 1 , ∂ x ∂ y , ∂ x ∂ z ) \mathbf n(y,z) = (-1,\frac{\partial x}{\partial y},\frac{\partial x}{\partial z}) n(y,z)=(−1,∂y∂x,∂z∂x)一定指向北。
∬ S F ( x , y , z ) ⋅ d S = ∬ S F ( x , y , z ) ⋅ n 0 ( x , y , z ) d S = ∬ S { P ( x , y , z ) n 0 ( x , y , z ) ⋅ [ 1 , 0 , 0 ] + Q ( x , y , z ) n 0 ( x , y , z ) ⋅ [ 0 , 1 , 0 ] + R ( x , y , z ) n 0 ( x , y , z ) ⋅ [ 0 , 0 , 1 ] } d S = ∬ S [ P ( x , y , z ) cos α + Q ( x , y , z ) cos β + P ( x , y , z ) cos γ ] d S \begin{aligned} \iint_S \mathbf F(x,y,z) \cdot d \mathbf S &= \iint_S \mathbf F(x,y,z) \cdot \mathbf {n_0}(x,y,z) dS \\ &= \iint_S \{ P(x,y,z) \mathbf {n_0}(x,y,z) \cdot [1,0,0]+ Q(x,y,z) \mathbf {n_0}(x,y,z) \cdot [0,1,0] + R(x,y,z) \mathbf {n_0}(x,y,z) \cdot [0,0,1] \} dS\\ &= \iint_S [P(x,y,z)\cos \alpha + Q(x,y,z)\cos \beta + P(x,y,z)\cos \gamma ]dS \end{aligned} ∬SF(x,y,z)⋅dS=∬SF(x,y,z)⋅n0(x,y,z)dS=∬S{P(x,y,z)n0(x,y,z)⋅[1,0,0]+Q(x,y,z)n0(x,y,z)⋅[0,1,0]+R(x,y,z)n0(x,y,z)⋅[0,0,1]}dS=∬S[P(x,y,z)cosα+Q(x,y,z)cosβ+P(x,y,z)cosγ]dS
有向曲面的面积微元是带有方向的,其方向由你选择的曲面的侧决定,比如选择了曲面的前侧那么其法向量一定是指向南,此时的法向量将会是 n ( y , z ) = ( 1 , − ∂ x ∂ y , − ∂ x ∂ z ) \mathbf n(y,z) = (1,-\frac{\partial x}{\partial y},-\frac{\partial x}{\partial z}) n(y,z)=(1,−∂y∂x,−∂z∂x)。
顺便说一下合一投影法和分面投影法:
这里,通过向量[1,0,0] 、[0,1,0]、 [0,0,1]其实就将法向量的偏导数部分归零了。我们发现,从这个角度去理解,合一投影法和分面投影法没有本质上的区别。