- RAG技术全面对比研究:探索最优检索增强生成策略
检索增强生成(RAG)技术全景解析:从基础到前沿在当今信息爆炸的时代,如何从海量数据中快速准确地获取所需信息,是人工智能领域的一大挑战。Retrieval-AugmentedGeneration(RAG,检索增强生成)技术应运而生,它结合了检索和生成的优势,通过从大量文档中检索相关信息,再利用这些信息生成高质量的回答。本文将系统性地介绍18种RAG技术,通过概念解析、代码示例和实际应用场景分析,帮
- RAG技术栈详解:构建智能问答系统的核心组件
认知超载
AI人工智能
本文深度剖析RAG(Retrieval-AugmentedGeneration)技术栈的核心构成,助你快速搭建企业级知识增强系统一、RAG技术架构全景图二、核心组件技术选型1.检索模块(Retriever)向量数据库主流选择:Pinecone、Milvus、Qdrant、Weaviate新兴势力:ChromaDB(开源轻量级)、腾讯云向量数据库嵌入模型(Embedding)OpenAItext-e
- JVM垃圾回收器
俗尘某某
JVMjavajvmjvm调优
JVM的垃圾回收机制主要通过不同的垃圾收集器来实现,垃圾收集器的设计围绕着几个核心目标:吞吐量、延迟(停顿时间)、内存占用,并根据它们工作的内存区域(年轻代/老年代)和工作方式(串行/并行/并发)进行分类。以下是JVM中主要的垃圾收集器类型及其特点,通常从两个维度来理解:维度一:按工作区域(分代收集的核心思想)年轻代收集器:主要负责回收年轻代(YoungGeneration)中的对象。特点:年轻代
- 【大模型学习 | BLIP原理】
九年义务漏网鲨鱼
pytorch人工智能深度学习大模型多模态
BLIP:BootstrappingLanguage-ImagePre-trainingforUnifiedVision-LanguageUnderstandingandGeneration作者指出,现有的视觉-语言预训练(Vision-LanguagePre-training,VLP)模型在语言理解与生成任务上难以同时取得优异表现:一方面,基于编码器(encoder-based)的模型在生成任务
- ZYNQ MPSOC PL端DDR4读写--介绍(1)
LEEE@FPGA
FPGA高速接口开发fpga开发DDR4
1DDR4介绍DDR4SDRAM(Double-Data-RateFourthGenerationSynchronousDynamicRandomAccessMemory,简称为DDR4SDRAM),是一种高速动态随机存取存储器,它属于SDRAM家族的存储器产品,提供了相较于DDR3SDRAM更高的运行性能与更低的电压,并被广泛的应用于计算机的运行缓存。DDR4主要特点1)更高频率与带宽起步频率为
- 【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
Akttt
T2I计算机视觉人工智能text2img深度学习
CODE:2309https://github.com/StevenShaw1999/RnBABSTRACT近期的文本到图像(T2I)扩散模型在以文本提示作为输入生成高质量图像方面取得了显著进展。然而,这些模型无法传达布局指令所指定的合适空间构图。在这项工作中,我们探索了使用扩散模型进行零样本接地T2I生成,即无需训练辅助模块或微调扩散模型就能生成与输入布局信息相对应的图像。我们提出了一种区域与边
- 用“Gemini 2.0 Flash Preview Image Generation”模型修改图片,有哪些常用的提示词和方法
子燕若水
AI画图caoni
选定模型在GoogleAIStudio或API中切换到gemini-2.0-flash-preview-image-generation并将输出格式设为Image+Text,否则不会返回图片。12上传或贴入待修改的图片在Studio中点击“➕”上传;调用API时,把图片作为inline_data或多part请求的一部分。3输入编辑指令与聊天相同直接用自然语言描述,例如「把这辆蓝色轿车改成敞篷,然后
- RAG和KAG的区别
testresultstomorrow
人工智能pythonjava知识图谱
RAG(Retrieval-AugmentedGeneration,检索增强生成)和KAG(Knowledge-AugmentedGeneration,知识增强生成)都是用于增强生成模型能力的框架,但它们在多个方面存在区别,以下是具体介绍:原理与知识处理方式RAG:基于检索和生成的结合,用户查询经检索系统处理后,从外部知识源检索相关文档或段落,再将这些作为上下文输入生成模型,生成相关回复。KAG:
- (PAT甲级)1019 General Palindromic Number 进制转换+回文数 (进制转换问题的实用技巧)
JaredYe
算法c++c语言pat考试
AnumberthatwillbethesamewhenitiswrittenforwardsorbackwardsisknownasaPalindromicNumber.Forexample,1234321isapalindromicnumber.Allsingledigitnumbersarepalindromicnumbers.Althoughpalindromicnumbersaremos
- RAG系统的“聪明药”:如何用反馈回路让你的AI越用越聪明?
许泽宇的技术分享
人工智能
大家好,我是你们的AI技术侃侃而谈小能手。今天我们来聊聊RAG(Retrieval-AugmentedGeneration,检索增强生成)系统的进化之路——如何让它像喝了聪明药一样,越用越聪明,越聊越懂你。你是不是也有这样的体验?用ChatGPT、文档问答机器人,刚开始觉得还行,但用久了发现它总是“死脑筋”,问同样的问题,答得千篇一律,甚至一错再错。你想:“要是它能记住我的吐槽和建议,下次别再犯同
- 企业级RAG系统架构设计与实现指南(Java技术栈)
在未来等你
大模型应用开发AI技术编程JavaSpring
企业级RAG系统架构设计与实现指南(Java技术栈)开篇:RAG系统的基本概念与企业应用价值在当今快速发展的AI技术背景下,检索增强生成(Retrieval-AugmentedGeneration,RAG)已成为构建智能问答、知识库管理、个性化推荐等应用的核心技术之一。RAG系统通过结合信息检索与自然语言生成(NLG),能够有效提升模型对特定领域数据的适应能力,避免传统大模型在训练数据不足或数据更
- 多模态大语言模型arxiv论文略读(140)
SemiHVision:EnhancingMedicalMultimodalModelswithaSemi-HumanAnnotatedDatasetandFine-TunedInstructionGeneration➡️论文标题:SemiHVision:EnhancingMedicalMultimodalModelswithaSemi-HumanAnnotatedDatasetandFine-T
- JVM堆(Heap)详解与工作流程分析
empti_
Java基础jvmjava
JVM堆(Heap)详解与工作流程分析1.JVM堆核心架构1.1堆内存整体布局Java堆新生代YoungGeneration老年代OldGenerationEden区Survivor区S0Survivor区S1元空间Metaspace字符串常量池1.2各区域核心参数区域默认占比JVM参数存储内容Eden区80%新生代-XX:NewRatio新创建的对象Survivor区10%新生代×2-XX:Su
- AttributeError: module ‘distutils‘ has no attribute ‘version‘
一只小狐狸坐在沙丘上
深度学习人工智能
问题描述run(unidexgrasp)tianyu@tianyu:~/UniDexGrasp/dexgrasp_generation$python./network/train.py--config-nameipdf_config--exp-dir./ipdf_trainError:Traceback(mostrecentcalllast):File"./network/train.py",li
- 【爆款长文】RAG检索增强大模型的“记忆力”革命:Contextual Chunk Headers(CCH)实战全解析
许泽宇的技术分享
人工智能机器学习
大家好,我是你们的AI技术侃侃而谈小能手。今天我们来聊聊RAG(Retrieval-AugmentedGeneration)这个AI圈的“记忆力补脑丸”,以及它最近新晋的“脑白金”——ContextualChunkHeaders(CCH)。别眨眼,这可是让大模型“查资料”能力质变的秘密武器!一、RAG:让大模型不再“张口就胡说”先来个小科普。RAG是什么?简单说,就是给大模型加个“外挂”,让它在回
- 爆改RAG检索力:三大Query变形术,助你玩转AI知识检索!
许泽宇的技术分享
大模型AIGC搜索引擎人工智能RAG
你以为RAG(Retrieval-AugmentedGeneration)就是“检索+生成”那么简单?那你可太低估AI界的“内卷”了!今天,咱们就来聊聊如何用三大Query变形术,把RAG的检索力拉满,助你在AI知识海洋里捞到最肥的鱼!一、RAG的“灵魂拷问”:你真的会提问吗?在AI时代,信息检索的效率和质量,80%取决于你“怎么问”。RAG系统的本质,就是“你问得好,我答得妙”。但现实往往是——
- RAG 调优指南:Spring AI Alibaba 模块化 RAG 原理与使用
ApacheDubbo
spring人工智能架构SpringAIRAG
>夏冬,SpringAIAlibabaContributorRAG简介什么是RAG(检索增强生成)RAG(RetrievalAugmentedGeneration,检索增强生成)是一种结合信息检索和文本生成的技术范式。核心设计理念RAG技术就像给AI装上了「实时百科大脑」,通过先查资料后回答的机制,让AI摆脱传统模型的"知识遗忘"困境。️四大核心步骤1.文档切割→建立智能档案库核心任务:将海量文档
- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- 深入理解RAG:大语言模型时代的知识增强架构
小胡说技书
#大模型/智能体语言模型架构人工智能python大模型RAG
在人工智能快速发展的今天,大语言模型(LLM)已经展现出令人惊叹的能力。然而,即使是最先进的模型也面临着知识更新滞后、事实性错误(幻觉)和专业领域知识不足等根本性挑战。检索增强生成(Retrieval-AugmentedGeneration,简称RAG)技术的出现,为解决这些问题提供了一个优雅而有效的方案。一、为什么需要RAG?从大模型的局限性说起1.1大语言模型的固有缺陷要理解RAG的价值,我们
- 【大模型应用开发 动手做AI Agent】RAG和Agent
AI智能应用
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
RAG,Agent,大模型应用,AI,知识图谱,检索,响应生成,聊天机器人1.背景介绍近年来,大模型技术取得了飞速发展,其强大的语言理解和生成能力为人工智能应用带来了新的机遇。然而,单纯依靠大模型的零样本学习能力往往难以满足复杂场景下的应用需求。为了更好地将大模型应用于实际场景,研究者们提出了RetrievalAugmentedGeneration(RAG)和AIAgent等新兴技术。RAG技术将
- AI大模型RAG架构详细解析(一)标准RAG、纠正型RAG、推测型RAG、融合型RAG、代理型RAG
大模型面微调_
人工智能架构LLM大模型ai自然语言处理RAG
在当今的AI时代,你是否想过,如果AI能够每次都从全球知识中精准地提取完美答案,那会是怎样的体验?检索增强生成(Retrieval-AugmentedGeneration,简称RAG)正是实现这一目标的幕后英雄。从ChatGPT引用来源的能力到企业AI扫描数千份文件,RAG为语言模型提供了现实世界的根基。然而,RAG并非“一刀切”的解决方案。随着时间的推移,AI研究人员设计了多种专门的RAG架构,
- Outlines 丝绸般流畅的文本结构化生成工具
胡同琥Randolph
Outlines丝绸般流畅的文本结构化生成工具outlinesGuidedTextGeneration项目地址:https://gitcode.com/gh_mirrors/ou/outlines近年来,随着大型语言模型的爆炸性增长,如何有效地利用这些智能体以产生准确、可控的文本成为了一个新的挑战。Outlines丝绸,一个强大的开源工具,应运而生,旨在通过结构化文本生成,让开发者和研究人员能够在
- 5G毫米波测试规范详解:3GPP核心标准、测试流程与实战挑战
network_tester
5G测试5G网络测试工具射频工程信息与通信信号处理网络协议
5G毫米波(mmWave)测试规范涉及多个国际标准组织和行业规范,主要确保设备在毫米波频段(通常指24GHz至100GHz)的性能、兼容性和可靠性。以下是5G毫米波测试的关键规范、测试内容和相关标准:1.核心标准组织与规范3GPP(3rdGenerationPartnershipProject)TS38.141系列:定义基站(gNB)的射频(RF)测试要求,包括毫米波频段的发射功率、频谱发射模板、
- Spring Boot + LangChain 构建 RAG 应用
程序员丸子
langchainAI大模型语言模型自然语言处理人工智能大语言模型RAG
使用LangChain构建RAG应用程序什么是RAG?检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索和生成两种关键技术的机器学习方法。这种方法在自然语言处理任务中特别有效,例如对话系统和问答系统。RAG的关键组件检索:•RAG首先从大型数据集或知识库中检索与用户查询相关的文档或数据。•通常使用信息检索技术,如向量搜索或关键词匹配。生成:•在检索到
- 【单调栈】-----【Largest Rectangle in a Histogram】
LargestRectangleinaHistogram题目链接题目描述如图所示,在一条水平线上有nnn个宽为111的矩形,求包含于这些矩形的最大子矩形面积(图中的阴影部分的面积即所求答案)。输入格式有多组测试数据,每组数据占一行。输入零时读入结束。每行开头为一个数字n(1≤n≤105)n(1\len\le10^5)n(1≤n≤105),接下来在同一行给出nnn个数字h1,h2,⋯ ,hn(0≤h
- 大模型实战干货:如何基于LangChain 在本地构建一个可运行的 RAG 系统(附完整代码)
勤奋的知更鸟
PythonAI大模型AI工具langchain
什么是RAGRAG(Retrieval-AugmentedGeneration,检索增强生成)是一种将语言模型(如ChatGPT)与外部知识库结合的技术,使其在生成回答时能够调用真实知识来源,而不仅依赖模型本身的参数记忆。LangChain是一个构建大语言模型(LLM)应用的强大框架,提供了连接向量数据库、检索器、提示模板和LLM的模块化工具链。RAG系统结构图项目依赖安装pipinstallla
- [代码评估-经验研究-会议ICPC]Analyzing Prompt Influence on Automated Method Generation:An Empirical Study
强化学习曾小健
#代码评估AI编程之代码大模型研究promptcopilot
全文总结这篇论文题为《AnalyzingPromptInfluenceonAutomatedMethodGeneration:AnEmpiricalStudywithCopilot》。研究背景背景介绍:这篇文章的研究背景是生成式人工智能(GenerativeAI)正在改变开发者与软件系统的交互方式,提供了可以生成和交付新内容的服务,以满足开发者的实际需求。例如,开发者可以通过自然语言提示直接从ID
- RAG 和微调如何抉择
成都犀牛
深度学习人工智能机器学习pytorch
要选择RAG(Retrieval-AugmentedGeneration)还是微调(Fine-tuning),或者两者结合,主要取决于如下数据特性应用场景资源限制模型行为的控制需求RAGvs.微调:如何选择?特性/维度RAG(检索增强生成)微调(Fine-tuning)数据特性知识不断变化/更新、信息量大、需要引用来源、数据隐私性高。数据领域特定、格式特殊、语言风格独特、知识相对稳定。知识来源外部
- Java 8 JVM中对象从年轻代(Young Generation)晋升到老年代(Old Generation)的过程浅析
学亮编程手记
Java基础javajvm开发语言
Java8JVM中对象从年轻代到老年代的过程在Java8的JVM中,对象从年轻代(YoungGeneration)晋升到老年代(OldGeneration)的过程是内存管理的重要机制。以下是详细过程:年轻代结构年轻代通常分为三个区域:Eden区-新创建的对象首先分配在这里Survivor区(From)-存放上一次GC后存活的对象Survivor区(To)-存放当前GC后存活的对象对象晋升过程初始分
- 深入了解域名生成算法(DGA):原理、应用及防御措施
BugHunter666
网络服务器运维linux前端
域名生成算法(DGA,DomainGenerationAlgorithm)是一种用于生成大量域名的算法,通常用于恶意软件和网络攻击中。它们的主要目的是通过生成看似合法的域名来逃避检测和阻止。例如,恶意软件可以使用DGA定期生成新的域名,以避免被网络安全系统发现并封锁。DGA的工作原理:生成域名:DGA通过算法生成大量的随机或伪随机的域名。这些域名通常是由一些固定的字符集和算法生成的,这些算法可能涉
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。