- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- 【Statsmodels和SciPy介绍与常用方法】
机器学习司猫白
scipystatsmodels统计
Statsmodels库介绍与常用方法Statsmodels是一个强大的Python库,专注于统计建模和数据分析,广泛应用于经济学、金融、生物统计等领域。它提供了丰富的统计模型、假设检验和数据探索工具,适合进行回归分析、时间序列分析等任务。本文将介绍Statsmodels的核心功能,并通过代码示例展示其常用方法。Statsmodels简介Statsmodels建立在NumPy和SciPy的基础上,
- 医咖会免费STATA教程学习笔记——单因素方差分析
Unacandoit
stata单因素方差分析
单因素方差分析和单因素回归分析相同1.单因素方差分析需要满足的假设:(1)因变量为连续变量(2)至少有一个分类变量(大于等于2类)(3)观测值相互独立(4)没有异常值(5)服从正态分布(6)方差齐性2.准备工作(1)导入数据集:webusesystolic,clear(2)检验是否存在异常值:方法一:图形——箱线图——在变量中选择systolic——确定方法二:grahboxsystolic,ov
- 逻辑回归详解:从原理到实践
在机器学习的广阔领域中,逻辑回归(LogisticRegression)虽名为“回归”,实则是一种用于解决二分类(0或1)问题的有监督学习算法。它凭借简单易懂的原理、高效的计算性能以及出色的解释性,在数据科学、医学诊断、金融风控等诸多领域中得到了广泛应用。接下来,我们将从多个维度深入剖析逻辑回归,带你揭开它的神秘面纱。一、逻辑回归的基本概念在回归分析中,线性回归是通过构建线性方程来预测连续值,例如
- R语言学习笔记之十
摘要:仅用于记录R语言学习过程:内容提要:描述性统计;t检验;数据转换;方差分析;卡方检验;回归分析与模型诊断;生存分析;COX回归写在正文前的话,关于基础知识,此篇为终结篇,笔记来自医学方的课程,仅用于学习R的过程。正文:描述性统计n如何去生成table1用table()函数,快速汇总频数u生成四格表:table(行名,列名)>table(tips$sex,tips$smoker)NoYesFe
- r语言 回归分析 分类变量_R语言下的PSM分析分类变量处理与分析步骤
weixin_39715834
r语言回归分析分类变量r语言清除变量
最近学习了PSM,我选择了用R去跑PSM,在这过程中遇到了许多问题,最后也都一一解决了,写下这个也是希望大家在遇到相同问题的时候能够得到帮助和启发,别的应该不会遇到太难的问题了哈哈。最近我也没做什么,录数据,或者说还在调整心态,最近遇到的事情也比较多,又或者说最近的心态比较乱,晚上也睡不好导致白天也比较烦躁,所以可能还是需要一段时间去好好调整,因此最近更新的也比较慢。不过还是会坚持的。问题阐述:1
- MATLAB算法实战应用案例精讲-【数模应用】主效应&交互效应&单独效应
林聪木
matlab算法开发语言
目录前言几个相关概念因素和水平主效应单纯主效应交互作用效应或影响(effect)因素之间的相互制约和影响两因素交互作用三因素及多因素交互作用几个高频面试题目什么是主效应,交互效应,单独效应?回归分析中是必须加入控制变量的吗?如果假如控制变量之后,显著性不高了该怎么办?控制变量说明控制变量选择控制变量处理主效应和交互效应的联系与区别如何依据主效应和交互效应描述结果?算法原理数学模型主效应二分变量交互
- 最小二乘法
superdont
计算机视觉入门最小二乘法算法机器学习matlab矩阵人工智能计算机视觉
最小二乘法(LeastSquaresMethod)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。具体来说,它可以用于线性回归分析,即找到一条最佳拟合直线(或更一般的曲线或面),使得实际观察数据点到这条直线(或曲线/面)的垂直距离(也就是误差)的平方和达到最小。在数学表示上,如果有一组观测数据集((x_i,y_i)),其中(i=1,2,…,n),最小二乘法旨在找到一个模型(y=
- 最小二乘法算法(个人总结版)
爱吃辣椒的年糕
算法使用深度学习算法人工智能fpga开发信息与通信最小二乘法随笔
最小二乘法(LeastSquaresMethod)是一种通过最小化误差平方和来拟合数据的回归分析方法。它被广泛应用于线性回归、多元回归以及其他数据拟合问题中。以下是详细的教程,涵盖基本概念、数学推导、具体步骤和实现代码。1.最小二乘法基本概念最小二乘法是一种用于数据拟合的统计方法,通过最小化观测数据与模型预测值之间的误差平方和,求解模型参数。2.线性回归的最小二乘法线性回归是最简单的最小二乘法应用
- SAS实验04 ——回归分析
jingmingx1
SAS操作分享sas数据分析
实验04回归分析一、实验目的通过实验进行对回归分析的学习,并有效掌握回归分析数据样本的解读和整理并从SAS输出结果中得到相关结论二、实验内容①我近些日子复习英语单词的个数和每天的单词学习时间之间的关系做一元线性回归分析②我近些日子每日学习单词时间与复习/学习单词两个变量之间的关系做二元线性回归分析③对四种不同化学物质对水泥放热的影响做逐步回归④在光电比色计上测定每升溶液中叶绿素的毫克数(x,mg/
- 数据挖掘是什么?数据挖掘技术有哪些?
Leo.yuan
数据数据挖掘人工智能大数据数据库数据分析
目录一、数据挖掘是什么二、常见的数据挖掘技术1.关联规则挖掘2.分类算法3.聚类分析4.回归分析三、数据挖掘的应用领域1.商业领域2.医疗领域3.金融领域4.其他领域四、数据挖掘面临的挑战和未来趋势1.面临的挑战2.未来趋势五、总结数据挖掘在当今时代的重要性日益凸显,它能从海量的数据中发现有价值的信息。下面我将为大家详细介绍数据挖掘是什么,以及常见的数据挖掘技术有哪些。本文核心观点如下:数据挖掘是
- 2篇7章6节:弹性网(Elastic Net)回归的原理和应用场景,并用R进行代码演示
R科学与人工智能
用R探索医药数据科学回归r语言数据挖掘Lasso回归人工智能变量选择机器学习
在统计建模和机器学习中,回归分析是一项基础而重要的技术。我们经常使用线性回归模型来探索变量之间的关系、预测未知数据。然而,传统线性回归在处理多重共线性(也称为变量高度相关)或高维数据时,往往会遇到严重的性能问题,比如模型过拟合、解释力下降等。为了解决这些问题,学者们提出了多种“正则化”(regularization)方法,其中最知名的有两种:Lasso回归和岭回归。本文将介绍它们的“融合升级版”—
- logistic回归分析python_【Python算法】分类与预测——logistic回归分析
weixin_39532699
1.logistic回归定义logistic回归是一种广义线性回归(generalizedlinearmodel),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y=w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p=L(w‘x+b),然后根据
- 方差分析表和回归分析表的那些浆糊糊
Angel Q.
线性回归方差分析回归分析概率论
先上表!我们来看一些基本的名词:(公式编辑还在学x的均值一直打不出来有会的还请评论区教教我)1.1方差分析表其中:k—因素总体的个数;n—观测值个数SSA(组间离差平方和)是:个水平组均值与总体均值离差的平方和;反映了控制变量不同水平对观测变量的影响SSE(组内离差平方和)是:每个观测数据与本水平组均值离差的平方和;反映了抽样误差的大小SST(总离差平方和)是:SSA+SSE1.2回归分析表直观来
- 简述相关与回归分析的关系_相关分析与回归分析的联系与区别
白尼桑塔纳
简述相关与回归分析的关系
相关分析与回归分析都是统计上研究变量之间关系的常用办法。他们都可以断定两组变量具有统计相关性。相关分析中两组变量的地位是平等的,而回归分析两个变量位置一般不能互换。相关分析与回归分析的关系这两种分析是统计上研究变量之间关系的常用办法。相同点:他们都可以断定两组变量具有统计相关性。不同点:相关分析中两组变量的地位是平等的,不能说一个是因,另外一个是果。或者他们只是跟另外第三个变量存在因果关系。而回归
- R语言学习--Day01--数据清洗初了解andR的经典筛选语法
Chef_Chen
学习
当我们在拿到一份数据时,是否遇到过想要分析数据却无从下手?通过编程语言去利用它时发现有很多报错不是来源于代码而是因为数据里有很多脏数据;在这个时候,如果你会用R语言来对数据进行清洗,这会让你的效率提升很多。R语言的典型使用场景统计分析执行假设检验(t检验、卡方检验)、回归分析、方差分析等优势:内置stats包提供100+统计函数,如lm(),aov()数据可视化绘制统计图表(散点图、箱线图、热力图
- 回归分析结果
weixin_39335709
数据挖掘
模型摘要模型RR方调整后R方标准估算的误差更改统计R方变化量F变化量自由度1自由度2显著性F变化量10.060a0.0040.0007.1190.0041.047411470.38220.265b0.0700.0536.9290.0664.7511711300.000a.预测变量:(常量),@是否早产:1是,0否,最终分娩方式2分类:顺产和产钳归属阴道分娩为0,剖宫产为1,@是否低出生体重:是1,
- 基于深度学习的NBA赛事分析与预测系统(开题报告)
shejizuopin
深度学习人工智能基于深度学习的NBA赛事分析与预测系统文献开题报告
本科毕业论文(设计)开题报告学生姓名开题报告日期指导教师姓名指导教师职称毕业论文题目基于深度学习的NBA赛事分析与预测系统开题报告内容1.选题背景和意义在信息化与智能化快速发展的今天,体育赛事的数据分析与预测已成为评估球队实力和吸引观众关注的重要手段。NBA作为全球最具影响力的篮球联赛之一,其赛事数据具有极高的分析价值。然而,传统的数据分析方法往往局限于统计描述和简单的回归分析,难以深入挖掘数据中
- python 数据分析概述
weixin_30530523
pythonjava人工智能
一、数据分析概念:广义的数据分析包括狭义数据分析和数据挖掘。①狭义的数据分析是指根据分析目的,采用对比分析、分组分析、交叉分析和回归分析等分析方法,对收集的数据进行处理与分析,提取有价值的信息,发挥数据的作用,得到一个特征统计量结果的过程。②数据挖掘则是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过应用聚类模型、分类模型、回归和关联规则等技术,挖掘潜在价值的过程。二、数据分析流程
- 机器学习——自动化机器学习(AutoML)
六点半571
机器学习自动化人工智能
机器学习——自动化机器学习(AutoML)自动化机器学习(AutoML)——2024年的新趋势什么是AutoML?AutoML的关键组成部分AutoML的优势AutoML实例:使用Auto-sklearn进行回归分析AutoML的应用领域2024年值得关注的AutoML工具持续发展的趋势自动化机器学习(AutoML)——让机器学习更高效到底何为AutoML?AutoML的高级优势使用AutoML的
- 量化交易之数学与统计学基础2.3——线性代数与矩阵运算 | 线性方程组
灏瀚星空
回归最小二乘法数据挖掘python笔记开源信息可视化
量化交易之数学与统计学基础2.3——线性代数与矩阵运算|线性方程组第二部分:线性代数与矩阵运算第3节:线性方程组:多因子模型中的回归分析与最小二乘法求解一、引言在量化投资领域,多因子模型是解析资产收益率的核心工具之一。其核心假设是资产收益率由多个因子的线性组合驱动,而最小二乘法(OLS)作为求解线性回归参数的经典方法,为因子系数估计提供了理论支撑和实践工具。本文将深入解析多因子模型的线性方程组构建
- 概率预测之NGBoost(Natural Gradient Boosting)回归和分位数(Quantile Regression)回归
人工都不智能了
boosting回归kotlin
概率预测之NGBoost(NaturalGradientBoosting)回归和线性分位数回归NGBoostNGBoost超参数解释NGBoost.fitscore(X,Y)staged_predict(X)feature_importances_pred_dist方法来获取概率分布对象分位数回归(QuantileRegression)smf.quantreg对多变量数据进行分位数回归分析概率预测
- 最最最详细的梯度下降与代价函数,公式理解+可视化~
被人偷偷卷不行
机器学习线性回归python回归numpy
文章目录前言一、线性回归二、代价函数与梯度下降1.代价函数2.梯度下降代码与可视化~总结前言本文将对线性回归中的代价函数,梯度下降公式及其可视化进行研究,让我们一起入门机器学习叭~一、线性回归利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法通俗来讲,就是用一条最适合的一次函数(如y=wx+b)去拟合现有的数据,并用这条直线去预测某一个x值对应的y值。例如:3r
- 【数据分析】基于 R 语言的水采集数据空间分析:一阶差分回归与固定效应建模指南
生信学习者1
数据分析数据分析r语言回归数据挖掘
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据下载设置参数确定输出文件名导入数据定义函数数据子集划分缩放降水量变量生成虚拟变量运行批量线性回归保存结果总结系统信息介绍在空间数据分析领域,探究不同因素对目标变量的影响至关重要。本教程围绕水采集数据,详细介绍如何使用R语言进行空间一阶差分回归分析,挖掘气候变量与水采集相关指标间的潜在关系。教程开篇便
- floyd matlab 无向图 最短路径 数学建模_在数学建模中常用的方法
李培智
floydmatlab无向图最短路径数学建模
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论
- 全国大学生数学建模竞赛历年赛题及优秀论文(链接见ping论)
爱建模的小鹿
算法回归matlab
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论
- 【数据分析】通过混合效应模型、随机森林和分段回归等研究不同因素对变量的影响
生信学习者1
数据分析数据分析随机森林回归r语言数据挖掘数据可视化算法
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍混合效应模型随机森林分段回归加载R包数据下载导入数据函数数据分析数据预处理混合效应模型随机森林分析模型构建偏依赖图(PDP)分段回归分析总结系统信息介绍土壤呼吸是生态系统碳循环的关键过程,其速率受多种环境因子影响。本教程将通过混合效应模型、随机森林和分段回归等统计方法,研究不同环境因子对土壤呼吸速率的影响,并寻
- MAE原理与代码实例讲解
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
MAE原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:MAE,MeanAbsoluteError,绝对误差平均,回归分析,机器学习1.背景介绍1.1问题的由来在机器学习和数据科学中,评估模型预测的准确性是至关重要的。绝对误差(AbsoluteError)是衡量预测值与真实值之间差异的一种简单方法。然而,当存在大量异常值时,绝
- Python数据分析复习(一)
我打断了锐雯的剑
python数据分析开发语言
一、数据分析的概念广义数据分析包括狭义数据分析和数据挖掘。狭义数据分析是指根据分析目的,采用对比分析、分组分析、交叉分析和回归分析等分析方法,对收集的数据进行处理与分析,提供与价值的信息,发挥数据的作用,得到一个特征统计量结果的过程。数据挖掘则是指从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过应用智能推荐、关联规则、分类模型和聚类模型等技术,挖掘信息潜在价值的过程。二、Pytho
- 青少年编程与数学 02-013 初中数学知识点 07课题、专业相关性分析
明月看潮生
编程与数学第02阶段青少年编程编程与数学专业相关性数据科学人工智能
青少年编程与数学02-013初中数学知识点07课题、专业相关性分析一、统计与概率(1)数据收集与整理(2)描述性统计(3)概率(4)回归分析二、数学建模与算法三、跨学科应用四、教育与实践总结在初中数学知识点中,与计算机及数据科学、人工智能关系较为密切的内容主要集中在统计与概率部分。这些知识点不仅是数学学科的重要组成部分,更是数据科学和人工智能领域的基础。一、统计与概率统计与概率是初中数学的重要分支
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。