ChatGLM DeepSpeed 全参数微调

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有62亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需6GB显存)。

ChatGLM-6B 是一个文本生成式对话模型,可以用于问答、闲聊等多种场景。它是由清华大学自然语言处理与社会人文计算实验室(THUNLP)开发的。

ChatGLM-6B 初具中文问答和对话功能,并支持在单张 2080Ti 上进行推理使用。具体来说,ChatGLM-6B 有如下特点:

  • 充分的中英双语预训练: ChatGLM-6B 在 1:1 比例的中英语料上训练了 1T 的 token 量,兼具双语能力。
  • 优化的模型架构和大小: 吸取 GLM-130B 训练经验,修正了二维 RoPE 位置编码实现,使用传统 FFN 结构。6B(62亿)的参数大小,也使得研究者和个人开发者自己微调和部署 ChatGLM-6B 成为可能。
  • 较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,这一需求可以进一步降低到 10GB(INT8) 和 6GB(INT4), 使得 ChatGLM-6B 可以部署在消费级显卡上。
  • 更长的序列长度: 相比 GLM-10B(序列长度1024),ChatGLM-6B 序列长度达 2048,支持更长对话和应用。
  • 人类意图对齐训练: 使用了监督微调(Supervised Fine-Tuning࿰

你可能感兴趣的:(ChatGLM实战教程,人工智能)