力扣题目链接
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。
示例 1:
示例 2:
提示:
两个字符串都只由小写字符组成。
1.确定dp数组(dp table)以及下标的含义**
dp[i][j]
表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]
2.确定递推公式
在确定递推公式的时候,首先要考虑如下两种操作,整理如下:
if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1
;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1
的基础上加1
if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j]
的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1]
;
3.初始化
dp[i][0]
表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]
同理。
4.遍历顺序
遍历顺序也应该是从上到下,从左到右
5.打印dp数组
以示例一为例,输入:s = “abc”, t = “ahbgdc”,dp状态转移图如下:
dp[i
][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()]
与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。
图中dp[s.size()][t.size()] = 3
, 而s.size() 也为3。所以s是t 的子序列,返回true。
class Solution {
public boolean isSubsequence(String s, String t) {
int[][] dp=new int[s.length()+1][t.length()+1];
for(int i=1;i<=s.length();i++){
for(int j=1;j<=t.length();j++){
if(s.charAt(i-1)==t.charAt(j-1)){
dp[i][j]=dp[i-1][j-1]+1;
}else{
dp[i][j]=dp[i][j-1];
}
}
}
if(dp[s.length()][t.length()]==s.length()){
return true;
}else{
return false;
}
}
}
力扣题目链接
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,“ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是)
题目数据保证答案符合 32 位带符号整数范围。
提示:
0 <= s.length, t.length <= 1000
s 和 t 由英文字母组成
1.确定dp数组(dp table)以及下标的含义**
dp[i][j]
:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]
。
2.确定递推公式
这一类问题,基本是要分析两种情况
s[i - 1] 与 t[j - 1]相等
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]
。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]
。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]
。
s[i - 1] 与 t[j - 1] 不相等
dp[i][j]
只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
所以递推公式为:dp[i][j] = dp[i - 1][j]
3.初始化
如图:,那么 dp[i][0]
和dp[0][j]
是一定要初始化的。
每次当初始化的时候,都要回顾一下dp[i][j]
的定义,不要凭感觉初始化。
dp[i][0]
表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。
那么dp[i][0]
一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。
再来看dp[0][j]
,dp[0][j]
:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。
那么dp[0][j]
一定都是0,s如论如何也变成不了t。
最后就要看一个特殊位置了,即:dp[0][0]
应该是多少。
dp[0][0]
应该是1,空字符串s,可以删除0个元素,变成空字符串t。
4.遍历顺序
遍历顺序也应该是从上到下,从左到右
5.打印dp数组
以s:“baegg”,t:"bag"为例,推导dp数组状态如下:
如果写出来的代码怎么改都通过不了,不妨把dp数组打印出来,看一看,是不是这样的。
动规五部曲分析完毕,代码如下:
class Solution {
public int numDistinct(String s, String t) {
int[][] dp=new int[s.length()+1][t.length()+1];
for(int i=0;i<=s.length();i++){
dp[i][0]=1;
}
for(int i=1;i<=s.length();i++){
for(int j=1;j<=t.length();j++){
if(s.charAt(i-1)==t.charAt(j-1)){
dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
}else{
dp[i][j]=dp[i-1][j];
}
}
}
return dp[s.length()][t.length()];
}
}