- 用 AI 解决心理健康匹配难题:探索 NLP 在心理咨询领域的应用
AI在心理健康行业的机遇与挑战心理健康行业近年来增长迅速,但仍然面临诸多技术挑战:•精准匹配:如何利用AI/NLP理解用户情绪、需求、心理状态,匹配合适的心理咨询师?•数据隐私:如何在AI分析过程中保障用户数据安全,避免敏感信息泄露?•智能化vs.人性化:如何平衡算法推荐与人工咨询的个性化,避免AI过度干预?这些问题,正是我们当前研究和探索的方向!研究方向:如何用AI进行智能匹配?我们正在研究如何
- 自然语言处理(Natural Language Processing, NLP)的主要应用及核心技术
彬彬侠
自然语言处理NLP自然语言处理
自然语言处理(NLP)是人工智能(AI)的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。NLP在多个领域有着广泛的应用,并结合了多种先进的技术,包括机器学习(ML)、深度学习(DL)、统计模型以及规则方法。1.自然语言处理的主要应用1.1机器翻译(MachineTranslation,MT)应用场景:在线翻译:GoogleTranslate、DeepL、BaiduTranslate。跨语
- 如何选择AI外呼产品?技术人必看的五大核心指标
MARS_AI_
人工智能自然语言处理语音识别信息与通信nlp
随着AI技术的快速发展,AI外呼产品逐渐成为企业客户沟通与业务拓展的利器。然而,面对市场上琳琅满目的解决方案,如何选择一款真正适合自身业务的AI外呼产品?本文从技术视角出发,结合实际应用场景,总结出五大核心评估指标,助你科学决策。一、技术核心:从算法到落地的关键AI外呼产品的核心能力取决于其底层技术架构,尤其是自然语言处理(NLP)与大模型技术的应用水平。以下是不同技术方案的对比:技术选型建议:•
- chatgpt赋能python:用Python发送短信的简单方法
u012804784
ChatGptpythonchatgpt开发语言计算机
用Python发送短信的简单方法在今天的数字时代,没有任何事情比即时通讯更方便。然而,短信仍然是一种极为有用的通信方式。实际上,正如您所看到的,本文将告诉您如何使用Python在几步内轻松地发送短信。发送短信的三种方法要发送短信,您有三种主要方法:使用SMSAPI-这是一种专为发送短信而设计的API,您可以将其集成到代码中。SMSAPI允许您访问专业工具,例如发送统计和交付报告等,但通常需要收费。
- AI快速变现之路,健康与情感咨询
头脑旋风
AI变现之路人工智能
以下是针对健康与情感咨询的AI快速变现方案,包含详细操作流程、工具推荐及行业应用案例,结合2025年AIGC技术趋势设计:一、核心操作流程详解1.需求分析与用户画像工具推荐:Typeform(问卷调研)+ChatGPT(需求分析)+心理测评工具(如MMPI-2)操作步骤:使用Typeform设计健康/情感评估问卷(示例:“最近3个月的压力来源及频率”)输入问卷结果到ChatGPT生成用户画像(如"
- AI快速变现之路,AI视频创作
头脑旋风
AI变现之路人工智能音视频
以下是针对AI视频创作的快速变现方案,包含详细操作步骤、工具推荐及行业应用案例,结合2025年AIGC技术趋势设计:一、核心操作流程详解1.需求分析与脚本生成工具推荐:ChatGPT4.0+ScriptStudio(视频脚本专用工具)操作步骤:通过问卷星收集客户需求(品牌调性/目标平台/时长要求)输入prompt到ChatGPT生成多版本脚本(示例:“生成一个30秒的科技产品广告脚本,风格类似苹果
- 扣子和DIfy调用deepseek对比分析
ISDF-CodeInkVotex
人工智能+科技前沿杂谈人工智能
近日,与网络高人学习,用Coze调用deepseek火山引擎版满血R1大模型,可以构建自己的业务级智能体,觉得还挺好玩的。又闻言,Dify、TensorFlow、PyTorch、Keras、Fastai、HuggingFace等工具可以微调诸如deepseek、chatgpt、doubao等大模型。下面重点讲Dify和Coze在调用deepseek上的区别做一个简要分析,供个人认知扫盲。1.调用方
- 29、深度学习-自学之路-深入理解-NLP自然语言处理-做一个完形填空,让机器学习更多的内容程序展示
小宇爱
深度学习-自学之路深度学习自然语言处理机器学习
importsys,random,mathfromcollectionsimportCounterimportnumpyasnpnp.random.seed(1)random.seed(1)f=open('reviews.txt')raw_reviews=f.readlines()f.close()tokens=list(map(lambdax:(x.split("")),raw_reviews)
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 2025年AI网络安全攻防战:挑战深度解析与全链路防御体系构建指南
emmm形成中
网络安全人工智能web安全安全
2025年AI网络安全攻防战:挑战深度解析与全链路防御体系构建指南引言:AI技术是一把双刃剑随着ChatGPT、Sora等生成式AI技术的爆发式应用,2025年被称为“AI应用元年”。然而,AI在赋能网络安全防御的同时,也为攻击者提供了新型武器。根据瑞星《2024年中国网络安全报告》,AI驱动的钓鱼邮件攻击成功率较传统手段提升47%,而Darktrace预测2025年企业内部“影子AI”工具使用量
- 使用AWS服务Amazon Bedrock构建大模型应用
西京刀客
AIaiawsbedrock
文章目录背景AmazonBedrock支持多模型选择实验demo列出AmazonBedrock服务支持的模型从读取用户评论、调用AmazonBedrock模型进行分类如何利用AWS的嵌入模型进行文本处理和分析背景2023年,生成式人工智能、大模型、ChatGPT等概念无处不在,但是到底什么是生成式人工智能?和之前的人工智能有什么区别?和大模型、Chatgpt的关系是什么?生成式人工智能(genAI
- 【AI视野·今日NLP 自然语言处理论文速览 第八十期】Fri, 1 Mar 2024
hitrjj
LLMNLPPapers人工智能自然语言处理NLPLLM大语言模型
AI视野·今日CS.NLP自然语言处理论文速览Fri,1Mar2024Totally67papers上期速览✈更多精彩请移步主页DailyComputationandLanguagePapersLooseLIPSSinkShips:AskingQuestionsinBattleshipwithLanguage-InformedProgramSamplingAuthorsGabrielGrand,V
- 【NLP算法面经】腾讯、头条算法岗详细面经(★附面题整理★)
青松ᵃⁱ
NLP百面百过自然语言处理算法人工智能
【NLP算法面经】腾讯、头条算法岗详细面经(★附面题整理★)嗨,你好,我是青松!自小刺头深草里,而今渐觉出蓬蒿。NLPGithub项目推荐:【AI藏经阁】:https://gitee.com/fasterai/ai-e-book介绍:该仓库主要分享了数百本AI领域电子书【AI算法面经】:fasterai/nlp-interview-handbook#面经介绍:该仓库一网打尽互联网大厂NLP算法面经
- DeepSeek API是什么
兔兔爱学习兔兔爱学习
大模型pythonprompt算法
DeepSeekAPI是一个提供人工智能服务的接口,它允许开发者通过简单的API调用来实现各种高级的自然语言处理(NLP)任务,如文本生成、对话系统、文本摘要、问答系统等。DeepSeekAPI通常基于先进的大模型,如Transformer架构的模型,提供了强大的语言理解和生成能力。DeepSeekAPI的特点易于集成:开发者可以通过简单的HTTP请求调用API,无需深入了解底层模型的具体实现。高
- ChatGPT生成的大模型竞品分析报告
Forbesdytto
chatgpt语言模型
AI大模型产品竞品分析报告1.报告概述本报告旨在分析国内外主要的AI大模型产品,包括其功能、市场定位、技术优势和劣势。通过对比这些竞品,我们可以更好地了解市场格局,制定自身产品的战略。2.主要竞争对手概述国内百度-文心一言(ErnieBot)阿里巴巴-M6腾讯-HunYuan华为-PanGu国外OpenAI-GPT-4Google-Bard(LaMDA)微软-AzureOpenAI(基于OpenA
- ChatGPT版本差异分析大全
爱吃青菜的大力水手
chatgpt人工智能
1.核心功能差异多模态支持:GPT-4o支持文本、图像和音频的多模态输入与处理,适合需要结合多种媒体形式的任务(如设计、多媒体内容生成)。o1系列(o1-preview/o1-mini)仅支持纯文本处理,但专注于深度推理和分析。GPT-3.5是早期版本,仅支持文本,且性能和上下文理解能力较弱。2.推理与准确性o1系列在复杂推理任务中表现卓越:通过CoT(链式推理)技术分解复杂问题,在医学临床案例测
- DeepSeek各模型现有版本对比分析
墨染夜雨笺
DeepSeekAI
文章目录一、基础模型系列:V1到V3的演进二、专用模型系列:推理与多模态三、版本选型与商业化趋势DeepSeek作为最近特别火爆的模型,本文将对DeepSeek现有的主要版本进行对比分析,涵盖参数规模、训练数据、功能改进、应用场景和性能表现等方面。一、基础模型系列:V1到V3的演进DeepSeek-V1发布时间:2024年1月特点:首代模型,专注于自然语言处理(NLP)和编码任务,支持128K标记
- 使用 LangChain 与 Solar LLM 的快速集成示例
qahaj
langchainpython开发语言
在本篇文章中,我们将深入探讨如何通过LangChain框架与SolarLLM(已弃用)进行集成。这虽然是一个过时的示例,但仍然可以帮助我们掌握如何使用类似的模型连接器设计结构化的语言模型调用流程。更重要的是,我们还会通过实际代码,展示集成的实现过程。一、技术背景介绍LangChain是一个强大的框架,它可以帮助开发者轻松集成不同的自然语言处理(NLP)模型,并构建复杂的链式推理任务。SolarLL
- ChatGPT免费背后的技术暗战 国产数字孪生如何打造“虚实共生”新生态?
wlsjdszls
chatgpt人工智能信息可视化
当ChatGPT搜索功能向全球免费开放,AI技术的平民化时代正式来临。在这场看似“让利”的商业策略背后,实则是全球科技话语权的重新洗牌。国产厂商如何在这场博弈中占据主动?数字孪生技术的场景化落地提供了破局方向。据中国信通院认证,凡拓数创的FT-Earth引擎可实现城市级孪生场景的Web端秒级加载,其在北京车展上推出的“AI孪生营销助手”,单日互动量突破10万。数字孪生赛道升温,国产厂商技术突围随着
- 全市场大模型分类及对比分析报告
早退的程序员
分类数据挖掘人工智能
全市场大模型分类及对比分析报告1.引言随着人工智能技术的飞速发展,大模型(LargeModels)已成为推动AI进步的核心力量。大模型凭借其强大的计算能力和海量数据处理能力,在自然语言处理(NLP)、计算机视觉(CV)、语音识别等领域取得了显著成果。本报告将对全市场中几类主要的大模型进行分类和对比分析,探讨其技术特点、应用场景及未来发展趋势。2.大模型分类根据模型架构、训练目标和应用领域,全市场的
- 探索企业级智能对话:ChatGPT + 企业数据 (C) 开源项目推荐
芮川琨Jack
探索企业级智能对话:ChatGPT+企业数据(C#)开源项目推荐azure-search-openai-demo-csharpAsampleappfortheRetrieval-AugmentedGenerationpatternrunninginAzure,usingAzureCognitiveSearchforretrievalandAzureOpenAIlargelanguagemodels
- Python微调DeepSeek-R1-Distill-Qwen-1.5B模型:使用Transformers和PyTorch进行训练
煤炭里de黑猫
pytorchpython人工智能机器学习
前言近年来,基于Transformer架构的预训练语言模型如GPT、BERT等已经取得了显著的成果,广泛应用于自然语言处理(NLP)的各个领域。为了让这些模型更加适应特定任务,我们通常会进行微调(Fine-tuning)。本博客将详细介绍如何微调一个名为Qwen-1.5B的模型,使用HuggingFace的Transformers库与PyTorch框架来实现。我们将通过一步步的代码解析,帮助你理解
- 选择翻译模型的智慧:Helsinki-NLP Opus-MT-zh-en的比较分析
邵意征Goddard
选择翻译模型的智慧:Helsinki-NLPOpus-MT-zh-en的比较分析opus-mt-zh-en项目地址:https://gitcode.com/mirrors/Helsinki-NLP/opus-mt-zh-en在当今全球化的语言交流需求中,翻译模型成为连接不同语言文化的桥梁。然而,面对市面上众多的翻译模型,如何选择最适合自己项目的模型,成为许多开发者和研究者的一大挑战。本文将以Hel
- 深度融入行业的利器:Helsinki-NLP Opus-MT-zh-en模型的应用案例
彭榕赢Driscoll
深度融入行业的利器:Helsinki-NLPOpus-MT-zh-en模型的应用案例opus-mt-zh-en项目地址:https://gitcode.com/mirrors/Helsinki-NLP/opus-mt-zh-en在当今全球化的大背景下,语言翻译的需求日益增长。Helsinki-NLPOpus-MT-zh-en模型,作为一款由赫尔辛基大学语言技术研究组开发的翻译模型,以其卓越的性能和
- AI专业知识库 | 创建
黎智程
1024程序员节
一、前言最近ChatGPT非常受欢迎,尤其是在编写代码方面,我每天都在使用。随着时间的增长,我开始对其原理产生了一些兴趣。虽然我无法完全理解这些AI大模型的算法和模型,但我认为可以研究一下其中涉及到大模型以外的专业知识、该如何进行回答、专业领域的专属知识大模型其实是无法回答的,那么我们就需要使用一个专业知识库来辅助AI进行对话操作。举例创建幼教师角色,需要专业知识来辅导幼儿,且需要符合正确的社会主
- python开发翻译软件&PDF文档识别转换翻译
Juniper_fly
AI模型PDF格式转换Python开发程序python开发语言
一、通过Helsinki-NLP模型实现离线翻译接口参考文档:https://blog.csdn.net/mzl87/article/details/1271234451.1、开发环境配置系统环境:WIN10开发环境:pycharm开发语言环境:Python3.8.10-64bitpip21.1.1(pip降级:python-mpipinstallpip==21.1.1)常用命令:查看python
- 深入Java自然语言交互的情感分析:从零构建智能情感检测系统
墨夶
Java学习资料2java交互开发语言
在这个信息爆炸的时代,如何快速准确地理解大量文本背后的情绪成为了企业和个人关注的焦点。无论是社交媒体监控、产品评论分析还是客户服务优化,情感分析技术都发挥着至关重要的作用。今天,我们将带您一步步构建一个基于Java的情感分析应用,让您不仅能够理解其背后的原理,还能亲手实现这一强大的工具。技术栈简介在开始之前,我们需要了解几个关键的技术点:StanfordNLP:提供了一套全面的自然语言处理功能,包
- 使用 Helsinki-NLP 中英文翻译本地部署 - python 实现
Xian-HHappy
技术知识点自然语言处理python人工智能中英文翻译模型本地部署
通过Helsinki-NLP本地部署中英文翻译功能。该开源模型性价比相对高,资源占用少,对于翻译要求不高的应用场景可以使用,比如单词,简单句式的中英文翻译。该示例使用的模型下载地址:【免费】Helsinki-NLP中英文翻译本地部署-python实现模型资源-CSDN文库模型也可以在huggingface下载。1、英文翻译为中文示例:#-*-coding:utf-8-*-#date:2024#Au
- 【2025最新】ChatGPT国内直连中文版镜像网站
J19109690198
chatgpt人工智能论文笔记gptAI写作
1.快速导航点此立即Chat直接访问2.两者对比项目官网镜像支付手段国际支付国内支付封禁策略网站检测,可能随时封禁采用更灵活的绕过策略,不易封禁价格每月140元订阅费用+每年70元虚拟卡一个月低至19.99元随用性需要固定订阅灵活选择,满足多种需求语音功能必须下载APP才能使用暂不支持语音功能智能程度官方最新模型与官网一致,模型更新及时次数限制3小时40条请求无限制,突破任何限制3.使用教程点击文
- NLP作业02:课程设计报告
0255-
自然语言处理课程设计人工智能
NLP作业02:课程设计报告作业头这个作业属于那个课程自然语言处理这个作业要求在哪里NLP作业02:课程设计报告我在这个课程的目标是通过综合应用项目的实施,培养团队协作沟通能力和运用现代工具分析和解决复杂工程问题的能力这个作业在那个具体方面帮助我实现目标能综合运用所学理论知识和操作技能进行实际工程项目的设计开发参考文献http://t.csdn.cn/mu8sF垃圾短信分类1.设计目的通过课程设计
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息