PWmat强大的第一性原理计算能力有望在有限计算资源内增加可模拟的体系尺寸或模拟的时长

本文整理自/《机器学习在分子动力学中的应用》培训视频

原创/wlj

编辑/paprika

力场的概念,机器学习的作用

我们都知道在很多实际问题中,需要模拟体系的动态过程,而这需要计算体系的能量。但第一性原理计算能量成本过高,无法解决很多有现实价值的大体系问题。在上世纪70年代人们提出力场的概念,以原子的几何排布来近似能量,大幅加快计算能量的速度。一般来说,力场会考虑原子间距离、化学键夹角以及其他更复杂的特征。

经过大约几十年的发展,力场在生物制药领域得到非常广泛的应用。很多国外的大型药企,都在力场的研发上有相当大的投入。但是我们称之为经典力场的这套方法,在很多情况下精度并不令人满意。力场的开发许多时候依赖于经验和实验数据,所以自然会引入一些噪音,这对力场的精度会造成影响。另外材料、化学工程领域,许多问题需要考虑量子力学效应,需要在力场中有体现。

力场的开发本质上是一个拟合的过程。举一个简单例子,对一个只有2个原子的体系,显然最重要的一个参数就是两个原子之间的距离。如果我们能够在某一个给定的范围内,很好地拟合出距离和能量之间的关系,那么就可以认为这是一个考虑周全的优秀力场。显然,对于更复杂的体系,需要更多的参数和更复杂的表达式。而从计算的角度来看,这恰恰是机器学习所擅长的。

PWmat的优势,MLFF开源下载使用

PWmat强大的第一性原理计算能力可为训练力场提供精确数据源,因此可以获得更加精确的力场,大幅加速分子动力学计算。这有望在有限计算资源内增加可模拟的体系尺寸或模拟的时长,从而研究现阶段无法模拟的现象。以100个原子的体系为例,依托第一性原理计算能力可在有限资源下通过训练力场,模拟200个原子甚至更大的体系。这在材料、制药以及电池等工业领域都有很广阔的应用前景。

PWmat—MLFF机器学习平台有4种训练模型,分别为线性模型、非线性VV模型、基于Kalman滤波器的深度神经网络(KFNN)以及基于Kalman滤波器的DP-torch模型(KFDP),另外还有8种默认特征。此外,我们将在未来实现特征和模型的接口,用户可自己发展新的特征和新的训练模型。在训练数据上,PWmat-MLFF支持PWmat格式和VASP格式;在分子动力学模拟的阶段,用户可使用LAMMPS和PWmat。

得益于PWmat独特的能量分解算法,PWmat-MLFF可以将每个原子单独的能量作为训练数据输入到机器学习算法中。这相当于挖掘出每一步分子动力学计算中的隐含信息,有望降低训练数据量。其他软件或平台目前还不能拥有此项优势。在训练中,PWmat-MLFF提供Kalman滤波器作为优化器,相比常见的ADAM优化器,Kalman滤波器能够明显加速收敛的过程,缩短训练的时长。

目前,在龙讯超算云平台Mcloud上已预装PWmat-MLFF,并将其打造成一个开源平台,使得工业界和学术界用户能以最小的成本将机器学习力场投入应用。您可以前往github公开下载、自由获取代码,我们也欢迎不同领域朋友贡献智慧。

https://github.com/LonxunQuantum/MLFF

使用教程/模拟案例/更多精彩内容

点击此处观看视频(建议wifi环境下观看)

你可能感兴趣的:(机器学习,分子动力学,第一性原理,材料模拟计算)