- 大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
(initial)
大模型科普人工智能强化学习
1.引言大型语言模型(LLM)在自然语言处理领域的突破,展现了强大的知识存储、推理和生成能力,为人工智能带来了新的可能性。强化学习(RL)作为一种通过与环境交互学习最优策略的方法,在智能体训练中发挥着重要作用。本文旨在探索LLM与RL的深度融合,分析LLM如何赋能RL,并阐述这种融合对于迈向通用人工智能(AGI)的意义。为了更好地理解这一融合的潜力,我们基于“LargeLanguageModela
- 2025年开源大模型全景:语言、多模态与开发工具的前沿探索
软件职业规划
开源
语言类开源大模型1.Llama系列开发者:Meta发布时间:2024年7月参数量:8B、70B、405B特点:Llama系列模型以其强大的多语言支持和广泛的自然语言处理能力而闻名。它支持文本生成、问答、翻译等多种任务,尤其在处理长篇文本时表现出色,支持高达128K的上下文长度。Meta与超过25个合作伙伴共同推出该系列模型,包括亚马逊云科技、Databricks和英伟达等,推动了开源大模型在工业界
- 数据标注工具及其对预训练模型性能的影响
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1预训练模型的崛起近年来,预训练模型(Pre-trainedModels)在自然语言处理(NLP)领域取得了显著的成功。这些模型通过在大规模无标注文本数据集上进行预训练,学习到丰富的语言知识和语义表示,并在下游任务中展现出优异的性能。BERT、GPT-3等预训练模型的出现,标志着NLP领域进入了一个新的时代。1.2数据标注的重要性尽管预训练模型展现出强大的能力,但它们仍然需要针对特
- UNet 改进:添加Transformer注意力机制增强捕捉长距离依赖关系的能力
听风吹等浪起
AI改进系列transformer深度学习人工智能
目录1.Transformer注意力机制2.Unet改进3.代码1.Transformer注意力机制TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前馈神经网络。这两个组件协同工作,处理和转换输入序列。多头注意力机制负责从输入序列中捕
- 人工智能:重塑未来生活与工作的科技力量
Geektec
问答专栏人工智能应用创新
方向一:介绍人工智能技术的发展历程和现状,指出它的应用领域和前景一、人工智能技术的发展历程人工智能(ArtificialIntelligence,AI)作为一门学科,其起源可以追溯到20世纪50年代。最初,AI的研究主要集中在逻辑推理、机器学习和自然语言处理等领域,目标是使机器能够模拟人类的智能行为。尽管在早期的探索中,AI遭遇了诸多挑战和瓶颈,但其发展潜力逐渐被认可,并在随后几十年中得到了迅速的
- 大语言模型(LLMs)全面学习指南(非常详细)零基础入门到精通,收藏这一篇就够了
网络安全大白
科技程序员人工智能语言模型人工智能自然语言处理
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- DeepSeek面试——分词算法
mzgong
人工智能算法
DeepSeek-V3分词算法一、核心算法:字节级BPE(Byte-levelBPE,BBPE)DeepSeek-V3采用字节级BPE(BBPE)作为核心分词算法,这是对传统BPE(BytePairEncoding)算法的改进版本。其核心原理是将文本分解为字节(Byte)序列,通过统计高频相邻字节对的共现频率进行逐层合并,最终形成128K扩展词表。二、BBPE的核心优势1.多语言统一处理能力跨语言
- 自然语言处理(NLP)技术介绍
风吹晚风悠
gpt人工智能nlp自然语言处理
自然语言处理(NLP)是一种涉及计算机和人类语言之间交流的技术。NLP技术可以应用于多个领域,例如机器翻译、情感分析、文本分类、问答系统等。以下是一些NLP技术的示例:机器翻译:NLP技术可用于将一个语言的文本自动翻译成另一个语言。例如,GoogleTranslate和百度翻译等在线翻译工具就使用了NLP技术。情感分析:NLP技术可用于分析文本中的情感和情感倾向。这可以帮助企业了解公众对其产品或服
- 基于Transformer的医学文本分类:从BERT到BioBERT
Evaporator Core
人工智能#深度学习#DeepSeek快速入门transformer分类bert
随着自然语言处理(NLP)技术的快速发展,Transformer模型在文本分类、情感分析、机器翻译等任务中取得了显著成果。在医学领域,文本数据(如电子病历、医学文献、临床报告)具有高度的专业性和复杂性,传统的NLP方法往往难以处理。Transformer模型,尤其是BERT及其变体,通过预训练和微调的方式,能够有效捕捉医学文本中的语义信息,为医学文本分类提供了强大的工具。本文将探讨Transfor
- TF-IDF:文本挖掘中的关键词提取利器
巷955
tf-idf
引言在自然语言处理(NLP)和文本挖掘中,TF-IDF是一种常用的技术,用于评估一个词在文档中的重要性。它不仅在信息检索领域广泛应用,还在文本分类、关键词提取等任务中发挥着重要作用。本文将详细介绍TF-IDF的原理,并通过一个实际的代码示例来展示如何使用TF-IDF从《红楼梦》中提取核心关键词。1.什么是TF-IDF?TF-IDF是一种统计方法,用于评估一个词在文档中的重要性。它由两部分组成:-T
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- 大模型(DeepSeek等)是否会动摇AI工程师的工作?
点我头像干啥
Ai深度学习人工智能AI编程计算机视觉
引言近年来,人工智能(AI)领域取得了突飞猛进的发展,尤其是大模型(如GPT-3、BERT、DeepSeek等)的出现,极大地推动了自然语言处理(NLP)、计算机视觉(CV)等领域的进步。大模型凭借其强大的泛化能力和广泛的应用场景,逐渐成为AI领域的核心技术之一。然而,随着大模型的普及,一个备受关注的问题浮出水面:大模型是否会动摇AI工程师的工作?本文将从多个角度探讨这一问题,分析大模型对AI工程
- Java线程协作式中断机制
超人汪小建(seaboat)
线程协作式中断机制jvm
跟着作者的65节课彻底搞懂Java并发原理专栏,一步步彻底搞懂Java并发原理。作者简介:笔名seaboat,擅长工程算法、人工智能算法、自然语言处理、计算机视觉、架构、分布式、高并发、大数据和搜索引擎等方面的技术,大多数编程语言都会使用,但更擅长Java、Python和C++。平时喜欢看书写作、运动、画画。崇尚技术自由,崇尚思想自由。出版书籍:《Tomcat内核设计剖析》、《图解数据结构与算法》
- 深度学习 bert与Transformer的区别联系
Humingway
深度学习berttransformer
BERT(BidirectionalEncoderRepresentationsfromTransformers)和Transformer都是现代自然语言处理(NLP)中的重要概念,但它们代表不同的层面。理解这两者之间的区别与联系有助于更好地掌握它们在NLP任务中的应用。TransformerTransformer是一种特定的深度学习模型架构,由Vaswani等人在2017年的论文《Attenti
- 自然语言处理:文本聚类
老赵爱学习
python文本聚类k均值聚类算法高斯混合模型的最大期望值算法无监督朴素贝叶斯模型自然语言处理人工智能
介绍大家好,博主又来和大家分享自然语言处理领域的知识了。今天给大家分享的内容是自然语言处理中的文本聚类。文本聚类在自然语言处理领域占据着重要地位,它能将大量无序的文本按照内容的相似性自动划分成不同的类别,极大地提高了文本处理和信息提取的效率。就好比在一个大型图书馆中,文本聚类能够像智能管理员一样,把各种书籍按照主题分类摆放,方便读者快速找到所需资料。而实现文本聚类的方法有很多,其中k均值聚类算法、
- Python与人工智能:为何它们是天作之合?
纪至训至
python人工智能开发语言
引言在人工智能(AI)飞速发展的今天,Python已成为这一领域的“明星语言”。从机器学习到深度学习,从自然语言处理到计算机视觉,Python的身影无处不在。那么,Python究竟为何能成为AI开发的首选工具?本文将探讨Python与AI之间的深度关联,并解析其背后的原因。1.Python的简洁性与可读性AI开发的核心在于快速迭代和实验,而Python以其简洁的语法和直观的代码结构著称。开发者无需
- 【自学笔记】讯飞星火基础知识点总览-持续更新
Long_poem
笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录讯飞星火基础知识点总览一、讯飞星火简介二、核心功能1.语音识别2.自然语言处理3.知识图谱4.星火API三、基础概念1.AI模型2.数据处理3.交互方式四、应用场景示例1.办公场景2.学习场景3.生活场景五、总结总结讯飞星火基础知识点总览一、讯飞星火简介讯飞星火是科大讯飞推出的一款强大的AI技术平台,它集成了语音识别、自然语言
- Python深度学习033:Python、PyTorch、CUDA和显卡驱动之间的关系
若北辰
Python深度学习python深度学习pytorch
Python、PyTorch、CUDA和显卡驱动之间的关系相当紧密,它们共同构成了一个能够执行深度学习模型的高效计算环境。下面是它们之间关系的简要概述:PythonPython是一种编程语言,广泛用于科学计算、数据分析和机器学习。它是开发和运行PyTorch代码的基础环境。PyTorchPyTorch是一个开源的机器学习库,用于应用如自然语言处理和计算机视觉的深度学习模型。它提供了丰富的API,使
- 从零开始大模型开发与微调:编码器的实现
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:编码器的实现作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:自然语言处理,大模型,Transformer架构,编码器模块,序列到序列学习文章目录从零开始大模型开发与微调:编码器的实现1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1编码器模块简介2.2编码器与Transfo
- 大模型赋能智慧司法,创业者如何推动法律服务普惠化?
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型,智慧司法,法律服务,普惠化,人工智能,自然语言处理,法律科技1.背景介绍近年来,人工智能(AI)技术蓬勃发展,特别是大模型的涌现,为各行各业带来了革命性的变革。其中,智慧司法领域展现出巨大的潜力,大模型能够有效提升法律服务效率,降低法律服务门槛,推动法律服务普惠化。传统法律服务模式面临着诸多挑战:服务成本高昂:律师咨询和诉讼费用对普通民众来说往往难以负担。服务效率低下:法律文件审查、合同分
- PyTorch深度学习框架进阶学习计划 - 第21天:自然语言处理基础
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程AIGC自然语言处理
PyTorch深度学习框架进阶学习计划-第21天自然语言处理基础今天我们将深入学习自然语言处理(NLP)的基础概念,重点关注词嵌入技术、序列建模原理以及主流模型之间的区别和优缺点。通过理解这些基础知识,你将能够更好地应用PyTorch构建NLP应用。1.词嵌入原理与实现词嵌入(WordEmbeddings)是NLP中的核心概念,它将单词映射到连续向量空间,使得语义相似的词在向量空间中距离较近。为什
- Python爬虫学习笔记_DAY_26_Python爬虫之requests库的安装与基本使用【Python爬虫】_requests库ip
苹果Android开发组
程序员python爬虫学习
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- AI基于深度学习的代码搜索案例(一)
人工智能MOS
人工智能深度学习机器学习
1.背景近年来,人工智能逐渐进入各个领域并展现出了强大的能力。在计算机视觉领域,以ImageNet为例,计算机的图像分类水平已经超过了人类。在自然语言处理(NLP)领域,BERT、XLNet以及MASS也一遍遍的刷新着任务榜单。当人工智能进入游戏领域,也取得了惊人的成绩,在Atari系列游戏中,计算机很容易超过了大部分人类,在围棋比赛中,AlphaGo和AlphaZero也已经超越了人类顶尖棋手。
- DeepSeek在供热行业中的应用
杨航 AI
人工智能深度学习python机器学习算法
目录引言1.1DeepSeek技术概述1.2供暖行业业务挑战1.3DeepSeek在供暖行业的应用前景DeepSeek技术基础2.1深度学习与机器学习2.2自然语言处理(NLP)2.3图像识别与处理2.4数据挖掘与分析供暖行业应用场景3.1设备监控与维护3.1.1设备状态监控3.1.2故障预测与诊断3.1.3维护计划优化3.2能源管理与优化3.2.1能耗数据分析3.2.2热负荷预测3.2.3节能优
- 揭秘Prompt Engineering 提示词工程(附学习文档)
LLM.
prompt人工智能ai大模型大模型提示词工程大语言模型LLM
PromptEngineering概览何为Prompt在自然语言处理领域,尤其是与大型语言模型(LLM)互动时,Prompt起着至关重要的作用。形象地说:LLM是金矿:大型语言模型如同深藏不露的金矿,蕴藏着巨大的知识与创造力潜力。Prompt是钥匙:而Prompt,则是开启这座金矿的钥匙。通过精心设计的问题或指令(Prompt),我们能引导模型产生特定的、有价值的输出,如文章创作、代码编写、问题解
- 应用商店评论分析实战:Python逆向工程破解Google Play加密接口与NLP建模
西攻城狮北
物联网python爬虫实战案例
一、项目概述在移动互联网时代,应用商店中的用户评论成为了开发者优化应用、提升用户体验的重要依据。然而,GooglePlay等应用商店对评论数据进行了加密处理,直接爬取难度较大。本文将介绍如何使用Python逆向工程破解GooglePlay的加密接口,实现对应用商店评论的实时采集,并结合NLP(自然语言处理)技术进行情感分析和主题建模,为开发者提供有价值的数据支持。二、技术选型(一)Python逆向
- Transformer大模型实战 对比ALBERT与BERT
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题在当今人工智能领域的迅速发展中,Transformer大模型无疑成为了自然语言处理(NLP)领域的璀璨明星。为了深入理解这一技术,我们特别撰写了《Transformer大模型实战对比ALBERT与BERT》这篇文章,旨在为广大读者提供一场关于Transformer模型及其实战应用的技术盛宴。关键词:Transformer,BERT,ALBERT,自然语言处理,深度学习,模型对比,实战应用摘
- Diffusion Transformer与Differential Transformer:技术创新与应用前景
AI大模型learner
深度学习人工智能机器学习
引言Transformer架构已成为自然语言处理(NLP)和计算机视觉(CV)领域的主流技术。随着技术的不断发展,DiffusionTransformer和DifferentialTransformer等新型架构逐步涌现,为生成模型和注意力机制带来了突破性的进展。本文旨在从科学视角探讨这两种模型的核心原理、技术特点及应用前景。DiffusionTransformer概念与原理DiffusionTr
- Vision Transformer (ViT):将Transformer带入计算机视觉的革命性尝试(代码实现)
阿正的梦工坊
DeepLearningDLPaperstransformer计算机视觉深度学习
VisionTransformer(ViT):将Transformer带入计算机视觉的革命性尝试作为一名深度学习研究者,如果你对自然语言处理(NLP)领域的Transformer架构了如指掌,那么你一定不会对它在序列建模中的强大能力感到陌生。然而,2021年由GoogleResearch团队在ICLR上发表的论文《ANIMAGEISWORTH16x16WORDS:TRANSFORMERSFORIM
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb