此博客并不是教程,只是一个练习总结
代码汇总放在文末
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision
from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
from Util import plot_image,pd_one_hot #辅助函数,在博客末尾附上
此数据集总共包含70K张图片,其中60K作为训练集,10K作为测试集。
更多消息可以查看官网官网链接:官网
batch_size设置一次处理多少图片,此处设置为512张图片,这样并行处理可以cpu,gpu加快处理速度
batch_size = 512
加载训练集,测试集图片
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist_data' #数据集文件夹名
,train=True
,download=True #当电脑没此数据的时候会自动下载数据集
,transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor() #矩阵转化为张量
,torchvision.transforms.Normalize((0.1307,), (0.3081,))
])
)
,batch_size=batch_size
,shuffle=True # 设置随机打散
)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist_data'
,train=False
,download=True
,transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
,torchvision.transforms.Normalize((0.1307,), (0.3081,))
])
),
batch_size=batch_size
,shuffle=False)
只查看9张图片,可在辅助函数内修改为其它值
x, y = next(iter(train_loader))
print(x.shape, y.shape) # 查看数据集大小
plot_image(x, y, 'image sample')
torch.Size([512, 1, 28, 28]) torch.Size([512])
注:
512, 1, 28, 28:四维矩阵,512张图片,1个通道,大小为28*28
1个通道的意思为单色,若改为3则是RGB彩色
class Net(nn.Module):
def __init__(self):
super(Net , self).__init__()
self.fc1 = nn.Linear(28*28 , 256) # 输入和输出的维度,根据经验自己设置
self.fc2 = nn.Linear(256 , 64) # 输入维度要等于上层的输出维度
self.fc3 = nn.Linear(64 , 10) # 数字结果为0~9,所以最后输出值为10个维度
def forward(self , x):
x = F.relu(self.fc1(x)) # relu 激活函数
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
optimizer = optim.SGD(net.parameters() , lr = 0.01 , momentum= 0.9)
此处没有调用GPU处理数据
loss_s = [ ] # 存储损失值
for each in range(3): # 迭代三次
for location , (x,y) in enumerate(train_loader):
x = x.view(x.size(0) , 28*28) #将图片矩阵打平
out = net(x)
y_onehot = pd_one_hot(y)
loss = F.mse_loss(out , torch.from_numpy(y_onehot).float())
# 清零梯度
optimizer.zero_grad()
# 计算梯度
loss.backward()
# 更新梯度
optimizer.step()
if(location % 5 == 0): # 每处理5*512张图片记录一次损失函数值
loss_s.append(loss.item()) # .item的意思为只输出值
print('第' , each+1 , '次迭代完成')
第 1 次迭代完成
第 2 次迭代完成
第 3 次迭代完成
plt.plot(range(len(loss_s)) , loss_s , 'y')
plt.show()
# 存储预测正确图片的数量
total_correct = 0
for x,y in test_loader:
x = x.view(x.size(0), 28*28)
out = net(x)
pred = out.argmax(dim=1) # 取最大值概率所在的位置
correct = pred.eq(y).sum().float().item()
total_correct += correct
print('正确率:' , total_correct/len(test_loader.dataset))
正确率: 0.8903
x , y = next(iter(test_loader))
plot_image(x , y , 'test')
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def plot_image(img, label, name):
fig = plt.figure()
for i in range(9):
plt.subplot(3, 3, i + 1)
plt.tight_layout()
plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation='none')
plt.title("{}: {}".format(name, label[i].item()))
plt.xticks([])
plt.yticks([])
plt.show()
def pd_one_hot(y):
y = y.reshape(-1 , 1)
y = pd.Series(y) # 使用pandas的one-hot处理
y= y.astype(str)
y = pd.get_dummies(y)
return y.values
项目github链接: github.com/2979083263/mnist
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision
from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
from Util import plot_curve,plot_image,one_hot,pd_one_hot
batch_size = 512
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist_data'
, train=True
,download=True
,transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor() #矩阵转化为张量
,torchvision.transforms.Normalize((0.1307,), (0.3081,))
])
)
,batch_size=batch_size
,shuffle=True # 设置随机打散
)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('mnist_data'
,train=False
,download=True
,transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
,torchvision.transforms.Normalize((0.1307,), (0.3081,))
])
),
batch_size=batch_size
,shuffle=False)
x, y = next(iter(train_loader)) #暂时看作迭代
print(x.shape, y.shape, x.min(), x.max())
plot_image(x, y, 'image sample')
class Net(nn.Module):
def __init__(self):
super(Net , self).__init__()
self.fc1 = nn.Linear(28*28 , 256) #输入和输出的维度
self.fc2 = nn.Linear(256 , 64)
self.fc3 = nn.Linear(64 , 10)
def forward(self , x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
optimizer = optim.SGD(net.parameters() , lr = 0.01 , momentum= 0.9)
loss_s = [ ]
for each in range(3):
for location , (x,y) in enumerate(train_loader):
x = x.view(x.size(0) , 28*28)
out = net(x)
y_onehot = pd_one_hot(y)
loss = F.mse_loss(out , torch.from_numpy(y_onehot).float())
# 清零梯度
optimizer.zero_grad()
# 计算梯度
loss.backward()
# 更新梯度
optimizer.step()
if(location % 5 == 0):
loss_s.append(loss.item())
print('第' , each+1 , '次迭代完成')
plt.plot(range(len(loss_s)) , loss_s , 'y')
plt.show()
# 存储正确的数量
total_correct = 0
for x,y in test_loader:
x = x.view(x.size(0), 28*28)
out = net(x)
# out: [b, 10] => pred: [b]
pred = out.argmax(dim=1)
correct = pred.eq(y).sum().float().item()
total_correct += correct
print('正确率:' , total_correct/len(test_loader.dataset))
x , y = next(iter(test_loader))
plot_image(x , y , 'test')