- Python数据分析之共享单车及建模探索(CLV建模、可视化)
weixin_46205203
笔记python数据分析数据建模
Python数据分析之共享单车及建模探索(CLV建模、可视化)开发环境4.3【开发平台及环境】Windons10教育版Python3.7IntelliJIDEA2018.2.1/PyCharmGoogeChrome数据清洗分析模块pandas,numpy可视化模块matplotlib上期原创:Python数据分析之智联招聘职位分析完整项目(数据爬取,数据分析,数据可视化)链接:https://bl
- python实战项目27:boss直聘招聘数据可视化分析
wp_tao
Python副业接单实战项目信息可视化python数据分析
boss直聘招聘数据可视化分析一、数据预处理二、数据可视化三、完整代码一、数据预处理在上一篇博客中,笔者已经详细介绍了使用selenium爬取南昌市web前端工程师的招聘岗位数据,数据格式如下:这里主要对薪水列进行处理,为方便处理,将日薪和周薪的数据删除,将带有13薪和14薪的数据也删除,计算出最低薪资、最高薪资和平均薪资三列。数据预处理代码如下:importpandasaspddf=pd.rea
- 计算机毕业设计之基于PythonBOSS直聘招聘数据可视化系统的设计与实现
wx—bishe58
信息可视化数据分析数据挖掘rnn人工智能课程设计python
本文主要介绍了基于PythonBOSS直聘招聘数据可视化系统的设计与实现。随着互联网的普及,BOSS直聘招聘网站成为了企业和求职者的重要交流平台。然而,大量的招聘信息给用户带来了信息过载的问题。为了解决这一问题,本文提出了一种基于PythonBOSS直聘招聘数据可视化系统的设计与实现方法。首先,本文采用爬虫技术收集了拉勾BOSS直聘招聘网站上的大量招聘信息。然后,利用爬虫优化算法对爬取到的数据进行
- 飞速搭震撼上线 开启软件开发智能化新篇章
低代码
近日,飞速低代码开发平台迎来了一项具有里程碑意义的重大更新——“飞速搭”正式上线。飞速搭通过深度融合前沿的人工智能技术,实现了从需求文档到应用发布的无缝衔接,一键智能生成应用,为软件开发领域带来了全新的突破和变革。“飞速搭”的实现路径高效而清晰。用户只需将需求文档或需求描述输入给预训练的大模型,这一步骤极大地简化了传统软件开发中繁琐的需求分析和文档编写过程,使用户能够更专注于核心需求的表达。大模型
- 《CPython Internals》阅读笔记:p360-p377
python
《CPythonInternals》学习第20天,p360-p377总结,总计18页。一、技术总结1.seaborn可视化工具。2.dtrace(1)安装sudoapt-getinstallsystemtap-sdt-dev(2)编译./configure--with-dtracemakecleanmake3.snakeviz适用于cProfile的可视化工具。二、英语总结(生词:0)无。关于英语
- 点云从入门到精通技术详解100篇-基于卷积和注意力机制的3D点云特征提取
格图素书
3d
目录知识储备点云获取技术分类一、图像衍生点云二、LiDAR三、RGB-D深度图像传感器基于3D激光slam的点云特征提取为什么要进行点云特征提取特征提取理论与代码编写点云特征提取主体类sample_and_groupfarthest_point_samplequery_ball_pointindex_points前言国内外研究现状卷积神经网络三维卷积神经网络稀疏卷积[21]基于3D点云数据的目标分
- Langchain[6]-LangGraph:异步和流、图可视化、多智能体协作、LCEL代码生成
汀、人工智能
AIAgentlangchainAIAgentLangGraph多智能体协作AI智能体AI大模型Agent框架
Langchain[6]-LangGraph:异步和流、图可视化、多智能体协作、LCEL代码生成1.异步和流因为任何大模型在推理的时候,都会有一定的时间延迟,这是由大模型的底层架构决定的,所以在很多应用,尤其是对话应用中,使用异步以及流式输出,是大幅提升用户体验的较好方法。在langGraph中可以很方便的实现异步和流,简单例子为例:异步调用方法:inputs={"messages"
- JS在HTML页面内动态创建SVG元素
一粒马豆
html5JavaScript数据可视化SVGJSD3WEB
最近在学习数据可视化,深入了解了如何在网页上实现数据的动态可视化。比如D3.JS主要应用JS在HTML页面内动态生成SVG元素并绑定数据。以下是我的例程://通过createElementNS创建svg元素并设置属性varsvg=document.createElementNS('http://www.w3.org/2000/svg','svg');svg.setAttribute("style"
- 企业数字化运维运营体系规划设计方案PPT
公众号:优享智库
数字化转型数据治理主数据数据仓库运维大数据
这份文件是关于企业数字化运维运营体系规划设计的综合解决方案,主要围绕构建高效、安全、稳定和集约的运维运营体系展开。以下是文件的核心要点总结:设计原则与目标:设计原则:包括自主可控、适配自身管理体系、稳快结合。强调不依赖厂商,通过体系变革实现统一运营运维,以及平衡创新与稳定性。目标:围绕“安全、稳定、高效、集约”建设运维运营体系,支撑高效警务运行。运维运营体系架构:强调构建“标准化、自助化、可视化、
- 从零到一:低代码平台的核心技术解析
低代码
在数字化转型的浪潮中,低代码平台正逐渐成为企业加速应用开发、提升效率的重要工具。它打破了传统开发模式的束缚,让更多非专业开发者也能参与到应用构建中来。今天,我们就来深入剖析低代码平台背后的核心技术,看看它是如何实现高效开发的。可视化设计引擎低代码平台的显著特征之一就是可视化设计。可视化设计引擎就像是一个图形化的工作区,开发者通过简单的拖拽、配置操作,就能搭建出应用的界面和流程。它提供了丰富的组件库
- 医学类 使用TransUNet、UNet、DeepLabV3+、HRNet、PSPNet 模型对息肉分割数据集进行训练、评估和可视化 EDD2020息肉数据集分割数据集
计算机C9硕士_算法工程师
数据集语义分割医学类数据集语义分割息肉TransUNetUNet
息肉数据集/息肉瘤分割项目解决(已处理好:EDD2020数据集(EndoscopyDiseaseDetectionandSegmentationChallenge)该息肉分割数据集主要包含人体生长的(肠胃)息肉用于器官内部息肉瘤分割,息肉目标检测,息肉定位任务息肉分割是一个重要的医学影像分析任务,特别是在内窥镜检查中。EDD2020数据集是一个很好的起点。我们将使用几种流行的深度学习模型(如Tra
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- STM32智能温室控制系统教程
STM32发烧友
stm32嵌入式硬件单片机
目录引言环境准备智能温室控制系统基础代码实现:实现智能温室控制系统4.1数据采集模块4.2数据处理与控制模块4.3通信与网络系统实现4.4用户界面与数据可视化应用场景:温室管理与优化问题解决方案与优化收尾与总结1.引言智能温室控制系统通过STM32嵌入式系统结合各种传感器、执行器和通信模块,实现对温室环境的实时监控、自动控制和数据传输。本文将详细介绍如何在STM32系统中实现一个智能温室控制系统,
- 国内外视频编解码标准体系-3GPP 5G标准进程
IT&IC先生
网络视频处理http物联网5g
作者:中国移动李琳针对国内外视频编解码标准,前文回顾讲解了标准组织和联盟包括MPEG、ISO、ITU、AOM、AVS等的阵营、历史、标准关系,并从纵向、横向分析对比视频编解码的特性。说到超高清视频的应用和发展,离不开5G,5G+超高清是未来行业应用、个人应用、家庭应用都可能带来变化的领域。说到5G,就离不开5G标准,5G标准是在3GPP组织负责,本文梳理下5G标准现状,尤其是与视频相关的3GPP标
- paddleseg推理预测文件解析predict.py
weightOneMillion
图像分割每天一篇PaddleSeg学习python人工智能
1预测命令格式predict.py脚本是专门用来可视化预测案例的,命令格式如下所示:pythonpredict.py\--configconfigs/quick_start/bisenet_optic_disc_512x512_1k.yml\--model_pathoutput/iter_1000/model.pdparams\--ima
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 基于大数据的电影数据分析可视化系统设计与应用
AI架构设计之禅
大数据AI人工智能AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于大数据的电影数据分析可视化系统设计与应用作者:禅与计算机程序设计艺术1.背景介绍1.1大数据时代的电影行业随着互联网技术和数字化的发展,电影行业已经进入大数据时代。每天都有海量的电影相关数据在各个平台上生成,包括票房数据、评分数据、影评数据等。这些数据蕴含着巨大的价值,如果能够有效地分析和利用,将为电影行业的发展提供重要的决策支持。1.2电影数据分析与可视化的意义1.2.1洞察电影市场趋势通过
- python实战项目34:基于flask的天气数据可视化系统1.0
wp_tao
Python副业接单实战项目flask信息可视化python
基于flask的天气数据可视化系统1.0一、效果展示二、flask简介三、图表绘制四、前端页面编写五、完整代码一、效果展示该flask项目相对简单入门,使用了flask框架、bootstrap前端技术,数据使用的是上一篇scrapy爬取城市天气数据中爬取到的数据。二、flask简介Flask是一个基于Python的Web开发框架,它以灵活、微框架著称,基于werkzeug的轻量级web框架,可提高
- 浅析AI大模型现状及其应用,零基础入门到精通,收藏这篇就够了
程序员_大白
互联网程序员大模型人工智能数据挖掘大模型
随着人工智能技术的迅猛发展,AI大模型已经成为全球科技竞争的焦点,展现出巨大的发展潜力和广阔的应用前景。AI大模型的应用落地正引发行业关注,技术进步正促使AI大模型的应用逐步从云端向终端设备延伸,从通用模型向针对特定行业的定制化解决方案转变,其商业潜力和对行业的影响不断增强。与此同时,国内外企业在大模型领域的竞争日趋激烈。AI大模型蓬勃发展AI大模型主要特征AI大模型具有泛化性(知识迁移到新领域)
- 【实践】Python实现气象数据分析与可视化
大数据张老师
Python程序设计信息可视化python数据分析可视化
一、项目需求在本节中,我们将明确“气象数据分析与可视化”项目的需求,定义项目的功能和目标,为后续的实现奠定基础。通过本项目,读者将学习如何使用Python的各种数据处理和可视化工具来分析和展示气象数据,从而掌握数据处理与可视化的核心技能。1.项目目标“气象数据分析与可视化”项目的目标是通过对历史气象数据的处理和分析,生成直观的图表和统计结果,帮助用户理解气象趋势并预测未来变化。项目的主要功能如下:
- 分形、大自然的分形几何、数据可视化、Python绘图
timedot-hj
python绘图指南-分形与数据可视化可视化python几何学算法
分形、大自然的分形几何、数据可视化、Python绘图中国传统中的『分形』大自然的分形几何数据可视化本系列采用turtle、matplotlib、numpy这三个Python工具,以分形与计算机图像处理的经典算法为实例,通过程序和图像,来帮助读者一步步掌握Python绘图和数据可视化的方法和技巧,并且让读者感受到“龙枝屈曲竞分形,瑰丽绮错千万状”的分形魅力。本系列共有八章,分别为海岸线有多长,基因与
- 【例51.3】 平移数据
c++初学者ABC
C++c++数组
题目描述将a数组中第一个元素移到数组末尾,其余数据依次往前平移一个位置。输入第一行为数组a的元素个数;第二行为n个小于1000的正整数。输出平移后的数组元素,每个数用一个空格隔开。样例输入复制1012345678910样例输出复制23456789101思路:无代码:#includeusingnamespacestd;intmain(){intn;cin>>n;intx[n+1];for(inti=
- Python 潮流周刊#87:媲美 OpenAI-o1 的开源模型(摘要)
python
本周刊由Python猫出品,精心筛选国内外的250+信息源,为你挑选最值得分享的文章、教程、开源项目、软件工具、播客和视频、热门话题等内容。愿景:帮助所有读者精进Python技术,并增长职业和副业的收入。本期分享了12篇文章,12个开源项目。下周因春节假期停更一周,提前恭祝大家蛇年吉祥,万事顺意!(PS.我在Python猫公众号给大家准备了一些红包封面,免费领取哟~)以下是本期摘要:文章&教程①优
- threejs——无人机概念切割效果
孙华鹏
无人机cocos2d游戏引擎
主要技术采用着色器的切割渲染,和之前写的风车可视化的文章不同,这次的切割效果是在着色器的基础上实现的,并新增了很多可调节的变量,兄弟们,走曲儿~线上演示地址,点击体验源码下载地址,点击下载正文从图中大概可以看出以下信息,一个由线组成的无人机模型,一个由粒子组成的无人机模型,那么这些粒子、线都是从一个无人机的gltf模型中提取出来的,无人机模型由很多个小的Mesh组成的一个大的group,那么为了着
- Github上最热门的11个Java开源项目你会了吗
Java小叮当
项目Github项目java程序员IT
前言4月份GitHub上最热门的Java开源项目排行已经出炉啦,一起来看看吧!1JimuReport(地址见文末)这是一款免费的数据可视化工具,报表与大屏设计!类似于excel操作风格,在线拖拽完成报表设计!功能涵盖:报表设计、图形报表、打印设计、大屏设计等,永久免费!2dolphinscheduler(地址见文末)ApacheDolphinScheduler是一个可视化的分布式大数据工作流任务调
- Python数据分析案例教程
kkchenjj
数据挖掘python数据分析信息可视化
Python数据分析案例教程Python在数据分析中的应用Python因其简洁的语法、强大的库支持以及广泛的社区资源,已成为数据分析领域的首选语言。它能够处理从数据清洗、数据可视化到机器学习模型构建的整个数据科学流程。本节将深入探讨Python在数据分析中的具体应用,包括但不限于数据清洗、数据探索、统计分析和预测建模。数据清洗数据清洗是数据分析的首要步骤,涉及处理缺失值、异常值、重复数据以及数据类
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_767172261
无人及视角YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- Python量化金融都需要用到哪些库?最全汇总
中年猿人
python金融开发语言
今天分享一篇Python量化金融最全汇总,推荐大家收藏~记得划到文末点赞呐~本文汇总了定量金融的大量三方库,按功能进行分类,覆盖数值运算,衍生品定价,回溯检验,风险管理,数据爬取,可视化等多个子领域,供每个Python程序员参考。不要重复造轮子,明确要解决的问题,然后寻找相应的工具。很多著名的包如Numpy,Pandas,Seaborn,backtrader等已经被证明高度有效,即便没有找到符合应
- golang性能调优工具pprof的使用
KhaD
golanggolang开发语言后端
文章目录前言一、cpu1.下载实例代码2.运行项目中的main.go文件3.查看CPU性能数据4.使用topN(N是可选的数量,也可以不加直接运行)命令来查看占用资源最多的函数5.查看可能存在问题的具体函数代码6.使用web命令来调用关系可视化二、堆内存1.查看堆内存性能数据2.在浏览器中进行查看三、goroutine1.查看goroutine性能数据四、mutex1.查看mutex性能数据五、m
- 基于Python的豆瓣电影爬虫数据分析可视化设计与实现
计算机软件程序设计
Python爬虫Python程序设计数据分析python爬虫
【1】系统介绍1.研究背景随着互联网的快速发展,电影产业已经成为全球文化产业的重要组成部分。观众对电影的需求和兴趣日益增长,而在线电影平台如豆瓣电影(DoubanMovie)成为了用户获取电影信息、发表评论和评分的主要渠道之一。豆瓣电影不仅提供了丰富的电影资料,还拥有庞大的用户群体,这些用户生成的内容(UGC)为电影市场分析提供了宝贵的数据资源。然而,尽管豆瓣电影平台提供了大量的公开数据,但这些数
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号