AlexNet提出了一下5点改进:
AlexNet(
(feature): Sequential(
(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace=True)
(7): Conv2d(96, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace=True)
(9): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(10): ReLU(inplace=True)
(11): MaxPool2d(kernel_size=2, stride=1, padding=0, dilation=1, ceil_mode=False)
)
(classifier): Sequential(
(0): Dropout(p=0.5, inplace=False)
(1): Linear(in_features=4608, out_features=2048, bias=True)
(2): ReLU(inplace=True)
(3): Dropout(p=0.5, inplace=False)
(4): Linear(in_features=2048, out_features=1024, bias=True)
(5): ReLU(inplace=True)
(6): Linear(in_features=1024, out_features=10, bias=True)
)
)
class AlexNet(nn.Module):
def __init__(self, num=10):
super(AlexNet, self).__init__()
self.feature = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 96, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(96, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=1),
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(32 * 12 * 12, 2048),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(2048, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, num),
)
def forward(self, x):
x = self.feature(x)
x = x.view(-1, 32 * 12 * 12)
x = self.classifier(x)
return x
10个epoch训练过程的打印:
D:\conda\envs\pytorch\python.exe A:\0_MNIST\train.py
Reading data…
train_data: (60000, 28, 28) train_label (60000,)
test_data: (10000, 28, 28) test_label (10000,)
Initialize neural network
test loss: 2302.56
test accuracy: 10.1 %
epoch step: 1
training loss: 167.49
test loss: 46.66
test accuracy: 98.73 %
epoch step: 2
training loss: 59.43
test loss: 36.14
test accuracy: 98.95 %
epoch step: 3
training loss: 49.94
test loss: 24.93
test accuracy: 99.22 %
epoch step: 4
training loss: 38.7
test loss: 20.42
test accuracy: 99.45 %
epoch step: 5
training loss: 35.07
test loss: 26.18
test accuracy: 99.17 %
epoch step: 6
training loss: 30.65
test loss: 22.65
test accuracy: 99.34 %
epoch step: 7
training loss: 26.34
test loss: 20.5
test accuracy: 99.31 %
epoch step: 8
training loss: 26.24
test loss: 27.69
test accuracy: 99.11 %
epoch step: 9
training loss: 23.14
test loss: 22.55
test accuracy: 99.39 %
epoch step: 10
training loss: 20.22
test loss: 28.51
test accuracy: 99.24 %
Training finished
进程已结束,退出代码为 0
效果已经非常好了