- MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
kuan_li_lyg
MATLAB机器人与控制系统应用matlab算法人工智能遗传算法GA旅行商问题
系列文章目录文章目录系列文章目录前言一、旅行商问题(TSP)二、MATLAB步骤1.引入库2.为自定义数据类型定制遗传算法3.旅行商问题所需函数4.设置遗传算法选项前言这个例子展示了如何使用遗传算法来最小化使用自定义数据类型的函数。对遗传算法进行了定制化处理以解决旅行商问题。一、旅行商问题(TSP)旅行推销员问题(英语:Travellingsalesmanproblem,TSP)是这样一个问题:给
- 基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
软件算法开发
MATLAB程序开发#路线规划matlab禁忌搜索算法TSP最优路径搜索
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述基于禁忌搜索算法的TSP问题最优路径搜索,旅行商问题(TSP)是一个经典的组合优化问题。其起源可以追溯到19世纪初,最初是在物流配送、线路规划等实际场景中被提出。简单来说,给定一组城市和城市之间的距离,旅行商需要从一个城市出发,访问每个城市恰好一次,最后回到起始城市,目标是找到总路程最短的路线
- 蚁群算法 (Ant Colony Optimization) 算法详解及案例分析
闲人编程
控制与系统优化算法22讲算法蚂蚁觅食行为组合优化旅行商问题车辆路径问题ACO蚁群算法
蚁群算法(AntColonyOptimization)算法详解及案例分析目录蚁群算法(AntColonyOptimization)算法详解及案例分析1.引言2.蚁群算法(ACO)算法原理2.1蚂蚁觅食行为2.2算法步骤2.3数学公式3.蚁群算法的优势与局限性3.1优势3.2局限性4.案例分析4.1案例1:旅行商问题(TSP)4.1.1问题描述4.1.2代码实现4.1.3流程图4.1.4优化曲线4.
- 基于遗传算法的城市旅行问题(TSP)求解
NovakG_
深度学习python算法深度学习神经网络
1.遗传算法背景介绍遗传算法是一种基于生物进化论中的自然选择和遗传机制的优化算法,模拟了生物进化过程以搜索最优解。通过仿真染色体的交叉、变异等操作,遗传算法将求解过程转换为类似生物进化的迭代运算。该算法在解决复杂的组合优化问题时,通常比常规优化算法更高效,且具有广泛应用,包括组合优化、机器学习、信号处理、自适应控制和人工生命等领域2.遗传算法基本解题思路遗传算法的设计思路主要受到大自然中生物体进化
- 运筹学——图论与最短距离(Python实现)(2),2024年最新Python高级面试framework
m0_60575487
2024年程序员学习图论python面试
适用于wij≥0,给出了从vs到任意一个点vj的最短路。Dijkstra算法是在1959年提出来的。目前公认,在所有的权wij≥0时,这个算法是寻求最短路问题最好的算法。并且,这个算法实际上也给出了寻求从一个始定点vs到任意一个点vj的最短路。2案例1——贪心算法实现==============2.1旅行商问题(TSP)**旅行商问题(TravelingSalesmanProblem,TSP)**
- python实现蚁群算法
孺子牛 for world
python算法开发语言
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法,常用于解决优化问题,如旅行商问题(TSP)、调度问题等。这里,将提供一个简化的蚁群算法实现,用于解决旅行商问题(TSP)。蚁群算法(ACO)解决TSP问题的基本步骤:初始化:设置蚂蚁数量、信息素挥发系数、信息素增加强度系数等参数,初始化信息素矩阵。构建解:每只蚂蚁随机选择起点,根据信息素浓度和启发式信
- 路径优化算法 | 基于蚁群的城市路径优化算法应用及其Matlab实现
算法如诗
路径优化算法(PathOptimization)算法matlab路径优化算法
蚁群算法(AntColonyOptimization,ACO)是一种模拟自然界中蚂蚁觅食行为的优化算法,用于解决如旅行商问题(TSP)等组合优化问题。在蚁群算法中,每只蚂蚁在搜索路径时都会释放信息素,并根据信息素浓度和其他启发式信息来选择下一个节点。随着时间的推移,较短的路径上累积的信息素会更多,从而吸引更多的蚂蚁,最终找到最优路径。在城市路径优化问题中,蚁群算法可以用于找到连接多个城市的最短路径
- 速读-张量流处理器(TSP)
Reacubeth
徐奕的专栏机器学习人工智能体系结构深度学习
Paper:Abts,Dennis,etal.“Thinkfast:atensorstreamingprocessor(TSP)foracceleratingdeeplearningworkloads.”2020ACM/IEEE47thAnnualInternationalSymposiumonComputerArchitecture(ISCA).IEEE,2020.简介本文介绍了一种名为张量流处
- 蚁群算法实现
qq_51497433
算法
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式搜索算法,常用于解决组合优化问题,如旅行商问题(TSP)、图的最短路径问题等。在MATLAB中实现蚁群算法,你需要遵循以下基本步骤:初始化参数:确定蚁群的规模、信息素的挥发系数、信息素的重要程度、启发式因子的重要程度等。初始化信息素矩阵:通常为每条路径上的信息素赋予相同的初始值。构建蚁群循环:在每一次迭代中
- 把大蒜和芋头这样炒,居然这么好吃,上桌就抢光,吃一次念念不忘
一勺美食
图片发自App把大蒜和芋头这样炒,居然这么好吃,上桌就抢光,吃一次念念不忘!经常买芋头来做料理及点心,老公和儿子很喜欢吃,用酱油糖乌醋来调味的炸芋头,虽然只是简单的料理,但家人爱吃,所以我很常做,这次加了大量的炸蒜瓣来炒,味道香口感也丰富,有软绵的蒜瓣,还有干松的芋头。图片发自App【蒜香蜜芋丁】材料:芋头450g、蒜20瓣。调味料:素蚝油1.5Tbsp、糖2tsp、乌醋1.5Tbsp图片发自Ap
- 【TSP问题】基于遗传算法求解快递运输成本最优化问题GA-MTSP附Matlab代码
天天Matlab代码科研顾问
路径规划matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍1.问题描述旅行商问题(TSP)是一个经典的组合优化问题,它要求在给定一组城市和城市之间的距离的情况下
- P、NP、NPC、NP困难
csuzhucong
pythonnumpy机器学习
目录一,P、NP1,P问题2,NP问题3,P=NP?二,多项式规约三,NP难问题四,NPC问题五,四种问题的关系一,P、NP1,P问题如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题。2,NP问题NP问题是指可以在多项式的时间里验证一个解的问题。显然,P问题一定是NP问题。3,P=NP?是否存在一个NP问题,它不是P问题?这个问题非常著名,至今没有定论。著名的TSP
- 如何选择旅游路线,使得假期旅游路费最少?
MindOpt_003
旅游阿里云数学建模
旅行是许多人的热爱,但是在规划一个完美的假期时,找到最经济的路线常常是一个挑战。这里就需要引入一个著名的优化问题——旅行商问题。本文将介绍TSP的基础知识,并使用MTZ消除子环方法优化一个简单的TSP问题的示例。旅行商问题简介TSP,全称为TravelingSalesmanProblem,即旅行商问题。它是一个经典的组合优化问题,其目标是找到一条路径,使得旅行商能够访问一组城市,并且总路程最短。在
- 人工智能之进化计算:基于遗传算法求解TSP问题,C/C++实现
crazybobo1207
人工智能c语言c++
和生物界中生物的繁殖进化一样,遗传算法的过程主要包括:选择,交叉,变异,每次迭代都能生成比上一代更好的种群。并且,交叉应该是高概率,变异应该是低概率(维持物种稳定,并且能够进化)。算法主要思想(无性繁殖,纯属个人见解):根据当前种群生成两份样本,第一份:用当代最好的一半样本直接变异,生成一份新的样本;第二份:从当代最好的一半样本中随机选择,构成新的另一半样本,不变异。(自然界中有无性繁殖,所以交叉
- 启发式算法
Sanchez·J
美赛启发式算法算法python数学建模
引入以一个著名的问题为例——旅行商问题(TSP)。假设有一个商人要拜访N个城市,每个城市只能拜访一次,最后回到原来出发的城市,求最短路径。这是一个NP-hard问题,即目前来看,要求出最优解只能枚举,复杂度为。n只要稍微大一点,就会无法在正常时间内求出来。现在我们退一步,要求在一定时间内求出来,但不要求最优的解,只要一个相对比较优秀的解就行,这就引出了启发式算法。启发式算法基于直观或经验构造的算法
- 卡尔曼滤波、马尔科夫模型、粒子滤波、TSP问题知识点回顾
竹叶青lvye
程序员的数学卡尔曼滤波隐马尔可夫模型动态规划粒子滤波
前面有小结了概率论、线性代数、现代控制理论的一些知识点,这边再来回顾下之前看过了关于卡尔曼滤波、马尔科夫模型、粒子滤波、动态规划中的TSP问题,这边也只是知其形,便于日后应用到一些实际案例中。一.卡尔曼滤波这边只是记录要点,便于快速回忆起来,可以从如下5个公式来入手。所以在代码初始化的时候要先初始化状态真实值和后验误差协方差矩阵主要可参考博客一文看懂卡尔曼滤波(附全网最详细公式推导)-知乎其它博客
- 遗传算法(GA)
基因组分析
遗传算法的应用遗传算法在人工智能的众多领域便得到了广泛应用。例如,机器学习、聚类、控制(如煤气管道控制)、规划(如生产任务规划)、设计(如通信网络设计、布局设计)、调度(如作业车间调度、机器调度、运输问题)、配置(机器配置、分配问题)、组合优化(如TSP、背包问题)、函数的最大值以及图像处理和信号处理等等。遗传算法与其他智能算法和技术相结合,使其问题求解能力得到进一步扩展和提高。例如,将遗传算法与
- 基于禁忌搜索算法的TSP路径规划matlab仿真
软件算法开发
MATLAB程序开发#路线规划matlab算法禁忌搜索TSP路径规划
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理4.1TSP问题描述4.2禁忌搜索算法原理4.3算法步骤5.完整程序1.程序功能描述基于禁忌搜索算法的TSP路径规划,输出优化收敛曲线以及路线规划图。2.测试软件版本以及运行结果展示MATLAB2022a版本运行3.核心程序.................................................
- 「TSP思维导图学语文」统编小学语文二下《找春天》
秋茗老师
TSP思维导图绘制法用“想—找—画”三步画出中心主题一级分支二级分支思维导图就完成啦!中心主题一级分支二级分支思维导图就完成了!很期待看到你的作品,每个人都有属于自己的大脑记忆,不用管别人怎么想怎么看,遵从你心,画你所想,画出专属你的思维导图吧。思维导图画完了,还有大用处哦!拓展联想在理解课文内容的基础上进行思维拓展和延申请你去看、去听、去闻、去触摸,找一找你身边的春天,她会藏在哪里?是什么样的呢
- 139基于matlab多旅行商MTSP问题
顶呱呱程序
matlab工程应用matlab算法开发语言M-TSP多旅行熵
基于matlab多旅行商MTSP问题,利用遗传算法求解多旅行商问题的算法设计,输出MTSP路径。相互独立路径,同一起点路径。程序已调通,可直接运行。139matlab多旅行熵M-TSP(xiaohongshu.com)https://www.xiaohongshu.com/explore/65abe66a000000001100c7be
- TBOX与TSP之间的工作协同简介
MarkHD
汽车
T-Box(TelematicsBox)是车辆智能网联系统中的重要组成部分,主要用于采集车辆数据并与TSP(TelematicsServiceProvider,车联网服务提供商)进行实时通信。以下是T-Box与TSP之间的工作内容介绍:数据采集与处理:T-Box通过CAN总线采集车辆的各类数据,包括车辆控制信息、行驶信息、故障信息等,并对这些数据进行解析处理。处理后的数据被用于实现车辆智能网联的关
- 启发式算法解决TSP、0/1背包和电路板问题
NK.MainJay
启发式算法算法
1.LasVegas题目设计一个LasVegas随机算法,求解电路板布线问题。将该算法与分支限界算法结合,观察求解效率。代码python代码如下:#-*-coding:utf-8-*-"""@Date:2024/1/4@Time:16:21@Author:MainJay@Desc:LasVegas算法解决电路问题"""importheapqimportrandommaps=[]nums=8fori
- 刷题总结1.17 下午
小白冲冲冲123
算法
第五题的平面图,偶图不理解第三题为什么使用克鲁斯卡尔算法?旅行商问题(TravelingSalesmanProblem,TSP)是一个著名的组合优化问题,描述的是一个旅行商要在给定的一系列城市之间找到最短的路径,使得每个城市只访问一次,并最终回到起点城市。旅行商变种问题是对旅行商问题的一些扩展或变化,通常包括以下几个方面:1.多旅行商问题(MultipleTravelingSalesmanProb
- MILP加速运算技巧(三)——以OR-Tools设置惰性约束为例
Lins号丹
数学建模数学建模OR-Tools求解器惰性约束
文章目录前言OR-Tools添加惰性约束的方法基于简单TSP的对比实验无惰性约束部分惰性约束完全惰性约束完整代码前言在运筹学建模和求解过程中1,“lazyconstraints”(惰性约束)是一种动态添加约束的策略。通常,在使用整数规划(IntegerProgramming)或混合整数规划(Mixed-IntegerProgramming)求解器时,我们希望找到满足所有约束条件的整数解。然而,某些
- 贪心算法【TSP问题】
续写少年!
算法入门贪心算法算法leetcode
贪心简介:只看下一次选择,比如:我需要做完一张数学试卷,我哪到试卷后做题,就先选择我最熟悉的,做完后选择我会的,最后尝试难题!每一个阶段都选择当前最优的解;注意:我们选择的只是当前阶段的最优解,所有整体上不一定是最优解;TSP+贪心题目简介:TSP问题(旅行家问题):旅行家旅行n个城市,要求每个城市仅经过一次,最后返回出发城市选择算法:贪心算法选择原因:每次选取到达城市代价最小的城市,当城市数量教
- 算法期末复习总结
Tarench
note算法
算法期末复习一、概论二、算法效率分析2.1算法分析框架2.2三种渐进符号2.3非递归算法的效率2.4递归算法的效率三、蛮力法3.1选择排序3.2冒泡排序3.3穷举法旅行商问题(TSP)背包问题分配问题四、递归算法五、分治法5.1大整数相乘5.2Stranssen矩阵乘法5.3二分搜索5.4归并排序5.5快速排序5.6棋盘格问题六、减治法6.1减去一个常量插入排序拓扑排序6.2减去一个常量因子二分查
- 计算智能——人工免疫算法
_hermit:
计算智能算法人工智能启发式算法学习
目录一、概述免疫算法是什么?生物学上免疫系统的基本概念二、生物免疫过程三、人工免疫算法四、免疫遗传算法疫苗的获取和接种例:TSP问题介绍疫苗的获取和接种过程五、克隆选择算法一、概述免疫算法是什么?免疫算法(ImmuneAlgorithm,IA)是基于免疫学理论和生物免疫系统机制而提出的计算智能算法,是对生物免疫机理的一种模拟。免疫机理种类繁多,利用生物免疫系统的某一方面机制或原理就可以设计新算法。
- 蚁群算法(ACO)解决旅行商(TSP)问题的python实现
筱筱西雨
计算智能算法python人工智能深度优先启发启发式算法
TSP问题旅行商问题(TravellingSalesmanProblem,简记TSP,亦称货郎担问题):设有n个城市和距离矩阵D=[dij],其中dij表示城市i到城市j的距离,i,j=1,2…n,则问题是要找出遍访每个城市恰好一次的一条回路并使其路径长度为最短。说明:回路:从某个城市出发,最后回到这个城市。蚁群算法蚁群算法(AntColonyOptimization,ACO)是一种基于蚂蚁觅食行
- 文献阅读:Large Language Models as Optimizers
Espresso Macchiato
文献阅读OPROprompt工程深呼吸GoogleLLM
文献阅读:LargeLanguageModelsasOptimizers1.文章简介2.方法介绍1.OPRO框架说明2.Demo验证1.线性回归问题2.旅行推销员问题(TSP问题)3.PromptOptimizer3.实验考察&结论1.实验设置2.基础实验结果1.GSM8K2.BBH3.泛化性3.消融实验1.meta-prompt2.生成prompt的数目3.起始点4.diversity4.过拟合
- 强化学习求解TSP(八):Qlearning求解旅行商问题TSP(提供Python代码)
优化算法MATLAB与Python
Python优化算法python开发语言
一、Qlearning简介Q-learning是一种强化学习算法,用于解决基于奖励的决策问题。它是一种无模型的学习方法,通过与环境的交互来学习最优策略。Q-learning的核心思想是通过学习一个Q值函数来指导决策,该函数表示在给定状态下采取某个动作所获得的累积奖励。Q-learning的训练过程如下:1.初始化Q值函数,将所有状态-动作对的Q值初始化为0。2.在每个时间步,根据当前状态选择一个动
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep