数据集及详细讲解请查找吴恩达深度学习第一课第四周,本篇博客为编程作业总结。
GitHub资料:https://github.com/TangZhaoXiang/deeplearning.ai.git
import numpy as np
import h5py # 操作h5格式文件(一般为图片数据集)
import matplotlib.pyplot as plt
import time
import scipy
from PIL import Image
from scipy import ndimage
# 自定义的文件
from testCases_v2 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward
from dnn_app_utils_v2 import *
# 将matplotlib的图表直接嵌入到Notebook之中
%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
#自动重新加载更改的模块
%load_ext autoreload
%autoreload 2
np.random.seed(1)
注:testCases_v2和dnn_utils_v2、dnn_app_utils_v2为自定义的python文件,太长这里就不贴出来了,可以下载github后查看源文件。
train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
# GRADED FUNCTION: initialize_parameters_deep
def initialize_parameters_deep(layer_dims):
np.random.seed(3)
parameters = {}
L = len(layer_dims) # number of layers in the network
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l],layer_dims[l-1]) * 0.01
parameters['b' + str(l)] = np.zeros((layer_dims[l],1))
assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
return parameters
# GRADED FUNCTION: linear_activation_forward
def linear_activation_forward(A_prev, W, b, activation):
if activation == "sigmoid":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)
elif activation == "relu":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)
assert (A.shape == (W.shape[0], A_prev.shape[1]))
cache = (linear_cache, activation_cache)
return A, cache
# GRADED FUNCTION: L_model_forward
def L_model_forward(X, parameters):
caches = []
A = X
L = len(parameters) // 2 # number of layers in the neural network
# Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
for l in range(1, L):
A_prev = A
A, cache = linear_activation_forward(A_prev, parameters["W" + str(l)], parameters["b" + str(l)], activation = "relu")
caches.append(cache)
# Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
AL, cache = linear_activation_forward(A, parameters["W" + str(L)], parameters["b" + str(L)], activation = "sigmoid")
caches.append(cache)
assert(AL.shape == (1,X.shape[1]))
return AL, caches
# GRADED FUNCTION: compute_cost
def compute_cost(AL, Y):
m = Y.shape[1]
# Compute loss from aL and y.
logprobs = np.multiply(Y, np.log(AL) + np.multiply(1 - Y, np.log(1 - AL)))
cost = np.sum(logprobs,axis=1,keepdims=True) / (-m)
cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
assert(cost.shape == ())
return cost
# GRADED FUNCTION: linear_backward
def linear_backward(dZ, cache):
A_prev, W, b = cache
m = A_prev.shape[1]
dW = np.matmul(dZ, A_prev.T) / m
db = np.sum(dZ, axis = 1, keepdims=True) / m
dA_prev = np.matmul(W.T, dZ)
assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)
return dA_prev, dW, db
# GRADED FUNCTION: linear_activation_backward
def linear_activation_backward(dA, cache, activation):
linear_cache, activation_cache = cache
# 根据激活函数不同求dZ,再由dz计算dA_prev, dW, db
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
# GRADED FUNCTION: L_model_backward
def L_model_backward(AL, Y, caches):
"""
注:cashe缓存的Z值 ,chaces里面包含的是全部层计算的Z值,即[Z1,Z2 ....ZL]
"""
grads = {}
L = len(caches) # the number of layers
m = AL.shape[1]
Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
# Initializing the backpropagation
# 公式: dAL = -(Y/A -(1-Y)/(1-A)) 由sigmoid版的L求导而得
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL
# Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
current_cache = caches[L-1] # 即最后一层的Z值
grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")
# 计算前L-1层的dA,dW,db
for l in reversed(range(L - 1)):
# lth layer: (RELU -> LINEAR) gradients.
# Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)]
current_cache = caches[l] # 读取每层前向传播计算的Z值
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, activation = "relu")
grads["dA" + str(l + 1)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
return grads
# GRADED FUNCTION: update_parameters
def update_parameters(parameters, grads, learning_rate):
L = len(parameters) // 2 # number of layers in the neural network
# Update rule for each parameter. Use a for loop.
for l in range(L):
parameters["W" + str(l+1)] -= grads['dW' + str(l+1)] * learning_rate
parameters["b" + str(l+1)] -= grads['db' + str(l+1)] * learning_rate
return parameters
# GRADED FUNCTION: L_layer_model
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
np.random.seed(1)
costs = [] # keep track of cost
# Parameters initialization.
parameters = initialize_parameters_deep(layers_dims)
# Loop (gradient descent)
for i in range(0, num_iterations):
AL, caches = L_model_forward(X, parameters)
cost = compute_cost(AL, Y)
grads = L_model_backward(AL, Y, caches)
parameters = update_parameters(parameters, grads, learning_rate)
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
# 得到参数
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
# 计算准确率
pred_train = predict(train_x, train_y, parameters_L) # 训练集准确率
pred_test = predict(test_x, test_y, parameters_L) # 测试集准确率