- ️ 在 Windows WSL 上部署 Ollama 和大语言模型的完整指南20241206
Narutolxy
技术干货分享智浪初航windows语言模型人工智能
️在WindowsWSL上部署Ollama和大语言模型的完整指南引言随着大语言模型(LLM)和人工智能的飞速发展,越来越多的开发者尝试在本地环境中部署大模型进行实验。然而,由于资源需求高、网络限制多以及工具复杂性,部署过程常常充满挑战。本指南基于实际经验,详细讲解如何在WindowsWSL(WindowsSubsystemforLinux)上部署Ollama和大语言模型,同时解决端口转发等常见痛点
- MySQL 如何深度分页问题
My LQS
历史经验篇学习笔记篇mysql数据库
在实际的数据库应用场景中,我们常常会遇到需要进行分页查询的需求。对于少量数据的分页查询,MySQL可以轻松应对。然而,当我们需要进行深度分页(即从大量数据的中间位置开始获取少量数据)时,就会面临性能严重下降的问题。本文将深入探讨MySQL深度分页的问题,并介绍子查询和滚动ID这两种有效的解决方式。深度分页问题背景深度分页通常是指使用LIMITm,n语句进行查询,其中m是偏移量,n是要返回的记录数。
- 【图像处理】基于双目立体匹配的景深计算(Matlab代码实现)
然哥爱编程
图像处理matlab数码相机
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述1.双目相机标定2.图像预处理3.特征提取与匹配4.视差计算5.深度图生成与校正6.景深计算7.误差分析与优化应用领域2运行结果3参考文献4Matlab代码实现1概述双目立体匹配一直是双眼视觉的研究热点。双目相机捕获同一场景的左右视点图像,使用立体匹配
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- 深度学习:基于MindNLP的RAG应用开发
Landy_Jay
深度学习人工智能
什么是RAG?RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生成内容的准确性、相关性和时效性。基本思想:通过外部知识库动态检索与用户查询相关的信息,并将检索结果作为上下文输入生成模型,辅助生成更可靠的回答。与传统LLM的区别:传统LLM仅依赖预训练参数中的静态知
- 深度学习篇---张量&数据流动处理
Ronin-Lotus
深度学习篇深度学习人工智能pythonTensorFlowPytorch张量数据流动处理
文章目录前言第一部分:张量张量的基本概念1.维度标量(0维)向量(1维)矩阵(2维)三维张量2.形状张量运算1.基本运算加法减法乘法除法2.广播3.变形4.转置5.切片6.拼接7.矩阵分解8.梯度运算:深度学习框架中的张量运算1.自动求导2.硬件加速3.高度优化第二部分:数据流动与处理1.磁盘(硬盘或固态硬盘)读取数据写入数据2.内存(RAM)加载程序和数据数据交换3.缓存CPU缓存磁盘缓存4.数
- OpenAI紧急加播:ChatGPT上新深度搜索,持续思考30分钟输出1万字,刷榜“人类最后的考试”
量子位
就在开源的DeepSeek-R1被整合进各路AI搜索工具之际,OpenAI临时举行小型发布会。4点27通知,8点开始直播。ChatGPT上新“DeepResearch”,把推理大模型的思考能力用于联网搜索。据介绍,DeepResearch功能可在数十分钟完成人类专家需要几个小时的复杂研究任务。在“人类最后的考试”上,DeepResearch刷新了最高分,比o3-mini高推理设置分数高出一倍。该测
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- 游戏Gala—基于星际文件系统的非中心化游戏
中创算力
游戏星际文件系统
如今游戏开发与两年前相比完全不同。今天的游戏是丰富的多媒体和艺术体验的结合,但这种体验深度是有代价的。这些版本中所有令人惊叹的设计、代码和基础架构都需要在存储解决方案中进行改进。随着沉浸式游戏迈向Web3前沿,该领域的开发人员也需要一些工具来组织、分析、归档和部署大量的数据。Galagame是一个能够满足这些需求的解决方案,并且帮助不同的团队和项目开发链上游戏。它的使命是建立一个非中心化的游戏平台
- 大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?
空间机器人
LLM语言模型学习笔记语言模型人工智能自然语言处理
大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?随着大模型在各个领域的广泛应用,我们面临的一个核心问题是——如何让这些庞大的模型在硬件资源有限的环境下运行?这就需要我们运用一系列的技术来“压缩”这些模型,使其在保持精度的同时,能够适应不同的硬件设备。那么,LLM压缩到底是如何实现的呢?让我们从几个关键技术开始讲解:剪枝(Pruning)、知识蒸馏(KnowledgeDistillation)
- M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models
UnknownBody
LLMDailyLLMPromptprompt语言模型人工智能
本文是LLM系列文章,针对《M-Ped:Multi-PromptEnsembleDecodingforLargeLanguageModels》的翻译。M-Ped:大型语言模型的多提示集成解码摘要1引言2方法3实验4研究5相关工作6结论摘要随着大型语言模型(LLMs)在自然语言处理(NLP)领域的广泛应用,提高其性能已成为研究热点。本文提出了一种新的多提示集成解码方法,旨在通过利用多个提示的结果聚合
- SlimGPT: Layer-wise Structured Pruning for Large Language Models
UnknownBody
LLMDailyLLMPruning剪枝语言模型人工智能
本文是LLM系列文章,针对《SlimGPT:Layer-wiseStructuredPruningforLargeLanguageModels》的翻译。SlimGPT:大型语言模型的分层结构化修剪摘要1引言2相关工作3前言4方法5实验6结论摘要大型语言模型(LLM)因其在各个领域的卓越能力而受到广泛关注,其巨大的参数规模为实际部署带来了挑战。结构化修剪是一种平衡模型性能和效率的有效方法,但在计算资
- WebSocket与http协议对比
CY_U
websockethttp网络协议java
HTTP与WebSocket协议深度对比一、协议基础特性对比特性HTTP/1.1WebSocket(RFC6455)协议层定位应用层协议应用层协议(基于HTTP升级机制)传输层依赖TCPTCP默认端口80(HTTP)/443(HTTPS)80(WS)/443(WSS)通信模型请求-响应(半双工)全双工双向通信连接生命周期短连接(默认)或长连接(Keep-Alive)持久化长连接头部开销每个请求携带
- 图神经网络实战(2)——图论基础
盼小辉丶
图神经网络从入门到项目实战神经网络图论图神经网络GNN
图神经网络实战(2)——图论基础0.前言1.图属性1.1有向图和无向图1.2加权图和非加权图1.3连通图和非连通图1.4其它图类型2.图概念2.1基本对象2.2图的度量指标2.2邻接矩阵表示法3.图算法3.1广度优先搜索3.2深度优先搜索小结系列链接0.前言图论(Graphtheory)是数学的一个基本分支,涉及对图研究。图是复杂数据结构的可视化表示,有助于理解不同实体之间的关系。图论提供了大量建
- 算法初学者(DFS搜索)
KuaCpp
算法深度优先c++
搜索分为DFS(图论):深度优先搜索,是一种用于遍历或搜索树或图的算法,所谓优先,就是说每次都尝试向更深的节点走。在搜索算法中,该DFS常常指利用递归方便地实现暴力枚举的算法,与图论中的DFS算法有一定相似之处,但并不完全相同,通常是:构造一棵搜索树进行搜索。例题洛谷P1706思路:先定义洛谷数组,一个用于存放合法解,一个用来标记该数是否用过。我们可以先写一个用于打印的函数print(),每当深搜
- DeepSeek:开启智能搜索与AI发展的新纪元
gs80140
AI人工智能
在人工智能领域,DeepSeek正以其卓越的技术创新和强大的性能表现,成为全球瞩目的焦点。作为一款基于深度学习技术的智能搜索引擎和AI模型,DeepSeek不仅在技术上取得了重大突破,还在多个应用场景中展现了巨大的应用潜力,为用户带来了前所未有的智能体验。一、DeepSeek简介DeepSeek由杭州深度求索人工智能基础技术研究有限公司推出,是一款集自然语言处理(NLP)、计算机视觉(CV)、强化
- 【Java】已解决java.lang.ClassNotFoundException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- Megatron:深度学习中的高性能模型架构
gs80140
基础知识科谱AI机器学习人工智能
Megatron:深度学习中的高性能模型架构Megatron是由NVIDIA推出的深度学习大规模预训练模型框架,主要针对大规模Transformer架构模型的高效训练与推理。Megatron大多用于GPT(生成式预训练模型)、BERT等Transformer模型的预训练,擅长在大规模数据集和高性能计算资源上进行训练。Megatron的主要特点1.超大模型的高效训练模型并行(ModelParalle
- 小南每日 AI 资讯 |美国与日本企业联合投资“星际之门”项目| 罗永浩老师最新初创项目上线! | 25/01/24
小南AI学院
人工智能microsoft
近期人工智能(AI)领域的重要动态随着人工智能技术的迅猛发展,多个领域涌现出令人瞩目的创新。以下是近期AI领域的几项重大进展,涵盖技术创新、行业合作以及AI在各个领域的应用:1.AI技术创新与产品发布DeepSeek发布开源模型R1,挑战传统开发模式中国初创公司深度求索(DeepSeek)于1月27日发布开源AI模型R1。该模型以低成本实现接近OpenAIGPT-3的性能,打破了“越大越好”的传统
- AIGC的底层框架和技术模块
五岔路口
AIGC
AIGC(ArtificialIntelligenceGeneratedContent,人工智能生成内容)的底层框架和技术模块是构建其强大自然语言处理能力的核心组成部分。以下是对AIGC底层框架和技术模块的详细解析:底层框架AIGC的底层框架主要基于深度学习的语言模型,特别是Transformer模型及其变种,如GPT(GenerativePre-trainedTransformer)等。这些模型
- 网络安全、网络预警是重要课题,大屏把好第一道关
大千UI工场
web安全网络安全
在信息技术飞速发展的今天,网络已经深度融入社会的各个层面,成为人们生活、工作不可或缺的部分。然而,网络安全问题也随之而来,网络攻击、数据泄露等事件频繁发生,给个人、企业乃至国家带来了巨大的损失和威胁。在应对这些网络安全挑战中,网络预警发挥着至关重要的作用,而大屏作为关键的技术支撑,正牢牢把好网络安全的第一道关。网络安全与网络预警的严峻形势随着数字化进程的加速,网络边界不断拓展,攻击面愈发广泛。从个
- 深度学习:基础原理与实践
阿尔法星球
深度学习python人工智能
1.深度学习概述1.1定义与发展历程深度学习是机器学习的一个分支,它基于人工神经网络的学习算法,特别是那些具有多层(深层)结构的网络。深度学习模型能够自动从原始数据中提取复杂的特征,而不需要人为设计特征提取算法。定义:深度学习可以定义为使用深层神经网络进行学习的过程,这些网络由多个非线性的变换组成,能够学习数据的多层次表示。发展历程:深度学习的起源可以追溯到1943年WarrenSturgisMc
- 什么是MOE架构?哪些大模型使用了MOE?
明哲AI
AIGC架构人工智能大模型MOE
在人工智能快速发展的今天,大语言模型(LLM)的规模越来越大,参数量动辄上千亿甚至万亿。然而,更大的模型往往意味着更高的计算成本和更多的资源消耗。混合专家模型(MixtureofExperts,简称MoE)作为一种创新的架构设计,为解决这一难题提供了一个优雅的解决方案。什么是混合专家模型?想象一下,如果把一个大语言模型比作一所综合性大学,传统的模型就像是让所有教授(参数)都参与每一次教学活动。而M
- day51|dfs与bfs的应用:岛屿数量,岛屿面积
kcwqxx
深度优先宽度优先算法c++图论
2.岛屿数量题目描述:给定一个由1(陆地)和0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。输入描述:第一行包含两个整数N,M,表示矩阵的行数和列数。后续N行,每行包含M个数字,数字为1或者0。输出描述:输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出0。深搜思路:利用深度搜索,每一执行dfs就将几块连在一起
- 什么是MoE?
CM莫问
深度学习人工智能算法常见概念人工智能算法python深度学习MoE混合专家模型机器学习
一、概念MoE(MixtureofExperts)是一种深度学习架构,它结合了多个专家模型(Experts)和一个门控机制(GatingMechanism)来处理不同的输入数据或任务。MoE的核心思想是将复杂的任务分解为多个子任务,由不同的专家网络来处理,以此来提升整体模型的性能和效率。MOE通过集成多个专家来显著提高模型的容量和表达能力,每个专家可以专注于学习输入数据的不同方面或特征,使得整个模
- 【 书生·浦语大模型实战营】学习笔记(三):“茴香豆” 搭建你的RAG 智能助理
GoAI
自然语言处理NLP深入浅出AI深入浅出LLM深度学习LLM人工智能大模型
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·
- 『大模型笔记』视觉语言模型解释
AI大模型前沿研究
大模型笔记LLMVLM视觉语言模型语言模型大模型人工智能
视觉语言模型解释文章目录一.视觉语言模型解析1.什么是视觉语言模型?2.开源视觉语言模型概览3.如何找到合适的视觉语言模型MMMUMMBench4.技术细节5.使用变压器(transformers)运用视觉语言模型6.使用TRL微调视觉语言模型二.参考文章一.视觉语言模型解析视觉语言模型是一类能够同时从图像和文本中学习,以处理从视觉问题回答到图像描述等多种任务的模型。本文将深入探讨视觉语言模型的核
- 网络安全技术深度解析与代码实践
我的运维人生
web安全网络安全运维开发技术共享
网络安全技术深度解析与代码实践随着信息技术的飞速发展,计算机网络已经广泛应用于政治、军事、商业等各个领域,与人们的生活越来越紧密。然而,这也带来了日益严峻的网络安全问题。网络安全是指保护计算机网络免受未经授权的访问、破坏或数据泄露的措施,是信息技术领域的重要课题。本文将详细介绍网络安全技术,并通过代码示例展示其实际应用。一、网络安全的重要性网络安全对于个人隐私、企业机密和国家安全至关重要。未经授权
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache