多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)

目录

    • 多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)_第1张图片
多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)_第2张图片

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)_第3张图片
多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)_第4张图片
多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)_第5张图片

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)_第6张图片
多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)_第7张图片

基本介绍

1.Matlab实现PSO-BP粒子群优化BP神经网络多变量时间序列预测;
2.运行环境为Matlab2018b;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,PSO_BPNTS.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

程序设计

  • 完整程序和数据下载:私信博主回复MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)
%------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

P_train = res(temp(1: 700), 1: 7)';
T_train = res(temp(1: 700), 8)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 7)';
T_test = res(temp(701: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  节点个数
inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train, 1);  % 输出层节点数

%%  建立网络
net = newff(p_train, t_train, hiddennum);

%%  设置训练参数
net.trainParam.epochs     = 1000;      % 训练次数
net.trainParam.goal       = 1e-6;      % 目标误差
net.trainParam.lr         = 0.01;      % 学习率
net.trainParam.showWindow = 0;         % 关闭窗口

%%  参数初始化
c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   30;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  1.0;        % 最大边界
popmin  = -1.0;        % 最小边界

%%  节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;

for i = 1 : sizepop
    pop(i, :) = rands(1, numsum);  % 初始化种群
    V(i, :) = rands(1, numsum);    % 初始化速度
    fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end

%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值

%%  迭代寻优
for i = 1: maxgen
    for j = 1: sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
        
        % 自适应变异
        pos = unidrnd(numsum);
        if rand > 0.85
            pop(j, pos) = rands(1, 1);
        end
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

        % 群体最优更新 
        if fitness(j) < fitnesszbest
            zbest = pop(j, :);
            fitnesszbest = fitness(j);
        end

    end

    BestFit = [BestFit, fitnesszbest];    
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

你可能感兴趣的:(时序预测,PSO-BP,多变量时间序列预测,粒子群优化BP神经网络)