代码随想录算法训练营第四十一天| 343. 整数拆分 96.不同的二叉搜索树

今天两题都挺有难度,建议大家思考一下没思路,直接看题解,第一次做,硬想很难想出来。

 343. 整数拆分 

代码随想录

视频讲解:动态规划,本题关键在于理解递推公式!| LeetCode:343. 整数拆分_哔哩哔哩_bilibili

public int integerBreak(int n) {
        //dp[i] 为正整数 i 拆分后的结果的最大乘积
        int[] dp = new int[n+1];
        dp[2] = 1;
        for(int i = 3; i <= n; i++) {
            for(int j = 1; j <= i-j; j++) {
                // 这里的 j 其实最大值为 i-j,再大只不过是重复而已,
                //并且,在本题中,我们分析 dp[0], dp[1]都是无意义的,
                //j 最大到 i-j,就不会用到 dp[0]与dp[1]
                dp[i] = Math.max(dp[i], Math.max(j*(i-j), j*dp[i-j]));
                // j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i-j ,再相乘
                //而j * dp[i - j]是将 i 拆分成两个以及两个以上的个数,再相乘。
            }
        }
        return dp[n];
    }

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

贪心

本题也可以用贪心,每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!

class Solution {
public:
    int integerBreak(int n) {
        if (n == 2) return 1;
        if (n == 3) return 2;
        if (n == 4) return 4;
        int result = 1;
        while (n > 4) {
            result *= 3;
            n -= 3;
        }
        result *= n;
        return result;
    }
};

 96.不同的二叉搜索树 

代码随想录

视屏讲解:动态规划找到子状态之间的关系很重要!| LeetCode:96.不同的二叉搜索树_哔哩哔哩_bilibili

代码随想录算法训练营第四十一天| 343. 整数拆分 96.不同的二叉搜索树_第1张图片

public int numTrees(int n) {
        //初始化 dp 数组
        int[] dp = new int[n + 1];
        //初始化0个节点和1个节点的情况
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                //对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加
                //一共i个节点,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }

你可能感兴趣的:(算法刷题,算法)