- 【深度学习】Unet的基础介绍
牧歌悠悠
深度学习人工智能算法深度学习人工智能U-net
U-Net是一种用于图像分割的深度学习模型,特别适合医学影像和其他需要分割细节的任务。如图:Unet论文原文为什么叫U-Net?U-Net的结构像字母“U”,所以得名。它的结构由两个主要部分组成:下采样(编码器):图像逐渐被缩小并且提取特征。上采样(解码器):逐渐恢复图像的尺寸,并通过“跳跃连接”将高分辨率的特征与低分辨率的特征结合,以保持细节。网络结构U-Net通常包括以下几部分:(1)下采样(
- 使用 Python 和 OpenCV 从一组图片生成 MP4 格式的视频
@Mr_LiuYang
写过的小程序pythonopencv音视频
概要在创建动画、制作幻灯片,从生成的图像数据中导出动态视频时,我们需要将一系列静态图片合成一个视频。安装依赖代码需要安装OpenCV库。可以通过命令行安装:pipinstallopencv-python完整代码图片尺寸不一时见后文调整视频尺寸importcv2importos#设置图像文件夹路径image_folder='person'#输出视频文件名output_video='person.mp
- OpenCV机器学习(10)训练数据的一个核心类cv::ml::TrainData
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::TrainData类是OpenCV机器学习模块中用于表示训练数据的一个核心类。它封装了样本数据、响应(标签)、样本权重等信息,并提供了多种方法来创建和操作这些数据,以适应不同的机器学习算法需求。主要功能数据准备:允许你从原始数据创建训练数据对象。支
- AI 驱动的自动化测试:从代码到报告的全面解读
测试者家园
人工智能软件测试质量效能测试策略自动化测试测试报告测试用例
在软件开发的生命周期中,测试一直是确保软件质量的关键环节。然而,随着开发规模的日益庞大,传统的手动测试和简单的自动化脚本已经无法满足高效、快速和高质量的需求。随着人工智能(AI)的兴起,尤其是在深度学习、自然语言处理(NLP)和智能决策算法方面的突破,AI驱动的自动化测试正逐渐成为现代软件开发中的核心组成部分。从自动生成测试用例、智能缺陷预测、到自动化报告生成,AI技术的应用为软件测试带来了革命性
- MATLAB图像处理
陈辰学长
图像处理matlab计算机视觉
MATLAB图像处理MATLAB,作为美国MathWorks公司出品的商业数学软件,以其强大的矩阵运算能力和丰富的函数库,在图像处理领域得到了广泛的应用。MATLAB不仅提供了基础的图像处理功能,还通过图像处理工具箱(ImageProcessingToolbox)等高级工具,为用户提供了从图像读取、显示、转换到高级分析和处理的一系列功能。以下将详细介绍MATLAB在图像处理方面的应用。一、MATL
- MATLAB 图像处理:阈值分割检测裂纹和划痕
PixelDyno
图像处理matlab计算机视觉Matlab
MATLAB图像处理:阈值分割检测裂纹和划痕阈值分割是一种常见的图像处理技术,可以将图像分成不同的区域。在裂纹和划痕检测中,阈值分割可以帮助我们将图像中的裂纹和划痕区域分离出来。本文将介绍如何使用MATLAB进行阈值分割裂纹和划痕检测。读入图像首先,我们需要读入一张待处理的图像。可以使用MATLAB的imread函数将图像读入到MATLAB中:img=imread('image.jpg');灰度化
- 科技快讯 | 京东为外卖骑手缴纳五险一金;全3D打印电喷雾发动机问世;小红书:3个月处置超300万违规账号
最新科技快讯
科技人工智能大数据
京东为外卖骑手缴纳五险一金2月19日,京东宣布,自2025年3月1日起,将逐步为京东外卖全职骑手缴纳五险一金,为兼职骑手提供意外险和健康医疗险。继给快递小哥缴纳五险一金后,京东再次成为首个为外卖骑手缴纳五险一金的平台。京东外卖自2月11日起正式启动“品质堂食餐饮商家”招募,对2025年5月1日前入驻的商家全年免佣金。深大推出DeepSeek人工智能通识课,本学期可选课学习深圳大学与腾讯云合作推出基
- 智能汽车安全实战:车联网威胁检测从入门到精通(含CAN总线/OTA/深度学习完整代码实现)
Coderabo
DeepSeekR1模型企业级应用汽车安全深度学习
车联网安全威胁检测实战:从CAN总线到OTA的全链路攻防解析(附完整Python代码)一、车联网安全威胁现状与挑战随着智能网联汽车渗透率突破60%,车端ECU数量超过150个,车载通信接口增加至8种以上,攻击面呈现指数级增长趋势。2023年某知名车企曝出的OTA升级漏洞导致50万辆汽车面临远程控制风险,凸显车联网安全检测的紧迫性。二、车联网安全检测技术框架2.1威胁检测架构设计classVehic
- 图像检测分析难题?三维天地引入YOLO目标检测技术带来全新解决方案!
资讯分享周
YOLO目标检测人工智能
在当今的检验检测认证行业,利用图像检测技术分析样本的相关指标已经成为众多检验检测领域的重要需求。无论是医学影像诊断、材料科学、食品检测还是质量控制,都依赖于精确的图像分析来提高检测的效率和准确性。然而,传统的图像处理方法面临着诸多挑战,如庞大的数据量、复杂的特征提取、漫长的模型训练周期以及复杂的公式计算等。这些问题不仅限制了检测的效率,还对结果的准确性产生了负面影响。一、实际业务操作中的工作难点1
- 南凌科技接入deepseek大模型,提升云网智安服务能力
NOVAnet2023
科技
南凌科技自成立以来,始终秉持创新驱动的理念,积极探索并运用新兴的人工智能技术,赋能公司服务能力和运营效率提升。2024年,南凌科技便已接入各类大模型,包含智谱、通义千问等大模型。在2024年10月的“AI+安全”研讨大会上,南凌科技CTO鲁子奕博士就已向客户、媒体等展示了南凌科技运用AI大模型进行数据处理、客服问答等场景。如今,DeepSeek以其开源特性崭露头角,不仅展现出高度的灵活性与可定制性
- 58同城深度学习推理平台:基于Istio的云原生网关实践解析
ITPUB-微风
云原生深度学习istio
在当今数字化时代,深度学习技术的快速发展为各行各业带来了革命性的变化。作为国内领先的分类信息网站,58同城一直致力于通过技术创新提升服务质量和用户体验。近期,58同城AILab推出了一项重要的技术革新——基于Istio的云原生网关深度学习推理平台。本文将从技术角度深入解析这一创新实践,探讨其架构设计、应用效果以及未来发展方向。一、深度学习推理平台的重要性深度学习推理平台在58同城的业务中扮演着至关
- DeepSeek赋能智慧文旅:新一代解决方案,重构文旅发展的底层逻辑
百家方案
解决方案DeepSeek智慧文旅
DeepSeek作为一款前沿的人工智能大模型,凭借其强大的多模态理解、知识推理和内容生成能力,正在重构文旅产业的发展逻辑,推动行业从传统的经验驱动向数据驱动、从人力密集型向智能协同型转变。一、智能服务重构:打造全域感知的智慧服务体系DeepSeek通过整合物联网、传感器、摄像头和智能设备,打破信息孤岛,实现多源数据的采集与共享。例如,故宫博物院利用自然语言处理技术,实现了128种语言的实时互译,极
- 内容中台重构智能服务:人工智能技术驱动精准决策
清风徐徐de来
其他
内容概要现代企业数字化转型进程中,内容中台与人工智能技术的深度融合正在重构智能服务的基础架构。通过整合自然语言处理、知识图谱构建与深度学习算法三大技术模块,该架构实现了从数据采集到决策输出的全链路智能化。在数据层,系统可对接CRM、ERP等企业软件,通过标准化接口完成多源异构数据的实时清洗与结构化处理,例如某金融科技平台利用动态知识图谱技术,将分散的客户行为数据与市场情报进行语义关联,形成可解释的
- 工业过程模拟:从理论到实践的 Python 实现
Echo_Wish
Python进阶python开发语言
工业过程模拟:从理论到实践的Python实现在现代工业中,过程模拟已成为优化生产流程、提升效率和降低成本的重要手段。作为一名人工智能和Python领域的自媒体创作者,今天我想和大家探讨如何使用Python实现工业过程模拟,并通过具体代码示例展示其实际应用。什么是工业过程模拟?工业过程模拟是指通过计算机模型对工业生产过程进行仿真和分析,以预测和优化生产流程。其主要目的是在不影响实际生产的情况下,通过
- 给你的数据加上杠杆:文本增强技术的研究进展及应用实践
熵简科技Value Simplex
作者信息:文本出自熵简科技NLP算法团队,团队利用迁移学习、少样本学习、无监督学习等深度学习领域最新的思想和技术,为熵简科技各大业务线提供底层AI技术支持和可落地的解决方案,包括前沿算法的领域内落地以及持续部署的后台支持等。导读:本文摘自熵简科技NLP团队的内部技术沙龙,文章系统性地回顾了自然语言处理领域中的文本增强技术在近几年的发展情况,重点列举和讨论了18年、19年中人们常用的五类文本增强技术
- 深度学习时间序列预测:LSTM算法构建PM2.5单变量模型及Python实现
代码编织匠人
python深度学习lstm
深度学习时间序列预测:LSTM算法构建PM2.5单变量模型及Python实现时间序列预测是指根据历史数据对未来的时间点进行预测,对于一些与时间相关的问题,例如气象、股票市场走势等,时间序列预测具有非常重要的应用价值。本文将介绍如何使用深度学习中的LSTM算法,构建针对空气质量(PM2.5)的时间序列单变量模型,并使用Python进行实现。数据准备首先,我们需要收集历史空气质量(PM2.5)数据,以
- 利用深度学习进行汇率预测:LSTM与Transformer模型的应用实践
人工智能_SYBH
深度学习lstmtransformer
第一部分:数据收集与准备1.1数据集介绍1.2数据准备第二部分:使用LSTM模型进行汇率预测2.1数据序列化2.2LSTM模型构建2.3模型训练与评估2.4结果可视化第三部分:使用Transformer模型进行汇率预测3.1数据序列化3.2Transformer模型构建3.3模型训练与评估3.4结果可视化结论引言外汇市场是一个充满波动性的金融市场,吸引了众多交易者和投资者。为了做出明智的决策,预测
- ModelScope竞品分析:在面对Hugging Face Hub和百度PaddleHub等竞品时
anneCoder
百度大模型人工智能语言模型机器学习
引言随着人工智能技术的飞速发展,模型即服务(MaaS)平台逐渐成为开发者构建和应用AI解决方案的重要工具。ModelScope,作为阿里巴巴达摩院推出的开源模型平台,自上线以来便以其丰富的模型资源、便捷的服务和开放的合作环境吸引了大量用户的关注。然而,在竞争激烈的市场中,ModelScope也面临着来自其他MaaS平台的挑战。本文将对ModelScope的竞品进行详细分析,旨在为读者提供一个全面而
- 使用shell脚本运行python程序
GiantGo
#Pythonpython开发语言
在训练深度学习模型时,为了解放生产力,避免手动调参等,一般写成shell脚本的形式,执行一次shell就可以把所有的python程序给运行完毕。例如,我需要探究batchsize的影响,一般新手入门可能这样做:设置batchsize=8,运行一次main.py程序。设置batchsize=16,运行一次main.py程序。设置batchsize=32,运行一次main.py程序。设置batchsi
- 提升信息检索准确性和效率的搜索技巧
雅俗共赏100
笔记搜索引擎
一、基础技巧精准关键词避免长句子,提取核心关键词(如用“光合作用步骤”代替“请告诉我光合作用的具体过程”)。同义词替换:尝试不同表达(如“AI发展史”vs“人工智能历史”)。排除干扰词使用减号-排除无关内容(例:苹果-手机排除科技公司结果)。精确匹配用英文引号""搜索完整短语(例:"量子力学基础教程")。二、高级搜索指令(以Google为例)限定网站site:域名关键词(例:site:zhihu.
- FaceSwap——人脸的自动交换或替换
爱研究的小牛
AIGC——图像AIGC人工智能深度学习
一、FaceSwap介绍FaceSwap是一款开源的深度学习应用程序,旨在实现人脸的自动交换或替换。二、FaceSwap的核心功能人脸交换(FaceSwapping):FaceSwap的主要功能是将一张人脸从源图像或视频中提取出来,然后将其应用到目标图像或视频中。该功能适用于静态图片和动态视频处理。人脸自动检测与对齐(FaceDetectionandAlignment):在进行人脸交换之前,Fac
- Deepseek整合SpringAI
java技术小馆
javaspringcloud
在现代应用开发中,问答系统是一个常见的需求,尤其是在客服、教育和技术支持领域。本文将介绍如何使用SpringBoot、Deepseek和SpringAI构建一个简单的问答系统,并通过Postman调用API接口实现问答功能。通过本文,你将学习如何整合这些技术,快速实现一个高效的问答系统。1.技术栈介绍SpringBoot:用于快速构建Java后端服务。Deepseek:高性能的深度学习推理框架,用
- 马斯克-全球最大算力集群-grok3效果任何
数据分析能量站
机器学习人工智能
就在刚刚,科技界巨头埃隆・马斯克正式揭晓了x.AI旗下的最新力作——Grok3。一经发布,Grok3便凭借其卓越表现,被赞誉为全球范围内最具智慧与力量的人工智能。(有待继续观察)作为x.AI精心打造的新型聊天机器人,Grok3展现出了令人惊叹的推理天赋,面对复杂问题时,能够凭借严密逻辑抽丝剥茧,给出精准解答。不仅如此,它还配备了如DeepSearch(深度搜索)这般的前沿功能,让信息获取与知识挖掘
- wav文件详解
满舅娘
wav文件详解分类:视频音频图像处理算法2013-10-1013:5066人阅读评论(0)收藏举报音频wav格式介绍ffmpeg目录(?)[+]工具我们这里使用的工具有ffmpeg,cooledit,ultraedit。音频文件我们以这音频文件为介绍例子文件链接http://pan.baidu.com/s/1j6fbt
- 人工智能专业毕业设计题目精选:推荐合集
HaiLang_IT
毕业设计选题计算机视觉人工智能目标检测
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了计算机专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- 跨语言语义理解与生成:多语言预训练方法及一致性优化策略
网罗开发
AI大模型人工智能深度学习负载均衡
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- AI赋能下的2025商业新契机:AI无人自动直播引领财富增长
V__17671155793
人工智能pythonchatgptgpt-3gpt
AI赋能下的2025商业新契机:AI无人自动直播引领财富增长!在科技飞速发展的时代,每一次重大的技术突破都有可能重塑商业格局,创造全新的财富机遇。如今,随着人工智能技术的深度应用,AI无人自动直播正成为2025年最具潜力的造富新赛道,为广大商家提供了前所未有的发展契机,助力其在激烈的市场竞争中展翅腾飞。一、传统直播困境与AI无人自动直播的破局之道回顾直播行业的发展历程,传统直播模式在经历了初期的爆
- 主要空间数据挖掘方法
CodeYoung7
总结归纳数据挖掘地理信息
文章出自:http://blog.csdn.net/shaoz/article/details/6847925张新长马林兵等,《地理信息系统数据库》[M],科学出版社,2005年2月第二章第二节空间数据空间数据挖掘是多学科和多种技术交叉综合的新领域,其挖掘方法以人工智能、专家系统、机器学习、数据库和统计等成熟技术为基础。下面介绍近年来出现的主要空间数据挖掘方法。1、空间分析方法利用GIS的各种空间
- ChatGPT和DeepSeek打造科研与办公的高效引擎
AAIshangyanxiu
编程算法统计语言农林生态遥感chatgpt
一、2024大语言模型最新进展与ChatGPT各模型讲解1、2024AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、最新前沿技术和发展趋势简介)2、国内外大语言模型(ChatGPT4O、Gemini、Claude、Llama3、PerplexityAI、文心一言、星火、通义千问、Kimi、智谱清言、秘塔AI等)对比分析3、OpenAI12天12场直播新功能解读与演示(ChatGPTO1模
- DeepSeek混合专家模型:低成本高精度革新多语言AI应用
智能计算研究中心
其他
内容概要当前人工智能领域正经历从通用模型向垂直化、场景化应用的关键转型,DeepSeek混合专家模型(MoE)通过突破性的架构设计,为这一进程提供了技术范本。该模型采用分治策略的混合专家架构,通过动态激活670亿参数中的子模块处理特定任务,既保证了模型规模带来的知识广度,又显著降低了计算资源的冗余消耗。在此基础上,其多模态处理能力不仅覆盖80余种自然语言的高精度互译,还实现了视觉符号与文本语义的跨
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement