为什么需要复杂度分析?
事后统计法:
通过统计、监控,就能得到算法执行的时间和占用的内存大小
1. 测试结果非常依赖测试环境
2. 测试结果受数据规模的影响很大
我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。这就是我们今天要讲的时间、空间复杂度分析方法。
大 O 复杂度表示法
案例:
可以假设每行代码执行的时间都一样,为unit_time
第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是(2n+2)*unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n * unit_time 的执行时间,第 7、8 行代码循环执行了 2n²,所以需要 2n²* unit_time行时间。所以,整段代码总的执行时间 T(n) = (2n²+2n+3)*unit_time。
尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。
我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!
T(n) :它表示代码执行的时间;
n 表示数据规模的大小;
f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n)来表示。
公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。
所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2n²+2n+3)。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。
当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n²)。
时间复杂度分析
1. 只关注循环执行次数最多的一段代码
其中第 2、3行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。
2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
第二段代码和第三段代码的时间复杂度是多少呢?答案是 O(n) 和 O(n²)
综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为 O(n²)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:如果T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).
3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6行的时间复杂度就是,T1(n) = O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个 cal() 函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n2)。
几种常见时间复杂度实例分析
对于刚罗列的复杂度量级,我们可以粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2n) 和 O(n!)。
当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。因此,关于 NP 时间复杂度我就不展开讲了。我们主要来看几种常见的多项式时间复杂度。
1. O(1)
首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。
我稍微总结一下,只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
2. O(logn)、O(nlogn)
所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。
根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为O(log3n)。实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。为什么呢?
对数之间是可以互相转换的,log₃n 就等于 log₃2 * log₂n,所以O(log₃n) = O(C * log₂n),其中C=log₃2是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。
如果你理解了我前面讲的 O(logn),那 O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn)也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。
3. O(m+n)、O(m*n)
从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m)
+ T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) =
O(f(m) * f(n))。
空间复杂度分析
时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。
跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
我们常见的空间复杂度就是O(1)、O(n)、O(n²),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。
内容小结
复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度
课后思考
有人说,我们项目之前都会进行性能测试,再做代码的时间复杂度、空间复杂度分析,是不是多此一举呢?而且,每段代码都分析一下时间复杂度、空间复杂度,是不是很浪费时间呢?你怎么看待这个问题呢?
解答:
不认为是多此一举,渐进时间,空间复杂度分析为我们提供了一个很好的理论分析的方向,并且它是宿主平台无关的,能够让我们对我们的程序或算法有一个大致的认识,让我们知道,比如在最坏的情况下程序的执行效率如何,同时也为我们交流提供了一个不错的桥梁,我们可以说,算法1的时间复杂度是O(n),算法2的时间复杂度是O(logN),这样我们立刻就对不同的算法有了一个“效率”上的感性认识。
渐进式时间,空间复杂度分析只是一个理论模型,只能提供给粗略的估计分析,我们不能直接断定就觉得O(logN)的算法一定优于O(n), 针对不同的宿主环境,不同的数据集,不同的数据量的大小,在实际应用上面可能真正的性能会不同,个人觉得,针对不同的实际情况,进而进行一定的性能基准测试是很有必要的,比如在统一一批手机上(同样的硬件,系统等等)进行横向基准测试,进而选择适合特定应用场景下的最有算法。
综上所述,渐进式时间,空间复杂度分析与性能基准测试并不冲突,而是相辅相成的,但是一个低阶的时间复杂度程序有极大的可能性会优于一个高阶的时间复杂度程序,所以在实际编程中,时刻关心理论时间,空间度模型是有助于产出效率高的程序的,同时,因为渐进式时间,空间复杂度分析只是提供一个粗略的分析模型,因此也不会浪费太多时间,重点在于在编程时,要具有这种复杂度分析的思维。