题目链接
一棵树,加强第 i i i 个点有 w i w_i wi 的花费,而如果距离某
个点 ≤ p ≤ p ≤p 的所有点都加强了,则会有 v p v_p vp 的收益,求最大净收益。
树形dp做法想不明白为啥是对的??qwq
大佬的代码仅供参考,有看懂的聚聚留言qwq
#include
using namespace std;
typedef long long ll;
int main() {
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int n;
cin >> n;
vector<int> a(n), b(n);
for(int i = 0; i < n; ++i) cin >> a[i];
for(int i = 0; i < n; ++i) cin >> b[i];
vector<vector<int>> g(n);
for(int i = 1; i < n; ++i) {
int u, v;
cin >> u >> v;
--u, --v;
g[u].push_back(v);
g[v].push_back(u);
}
vector<vector<int>> dp(n, vector<int>(n + 1, -1e9));
function<void(int,int)> dfs = [&](int u, int fa) {
dp[u][0] = 0;
for(int i = 1; i <= n; ++i) {
dp[u][i] = b[i - 1] - a[u];
}
for(int v : g[u]) {
if(v == fa) continue;
dfs(v, u);
vector<int> ndp(n + 1, -1e9);
for(int q = 0; q <= n; ++q) {
// dp[u][q]: 和 u 距离小于 q 的点都被选择了
// 那么对于 v 来说,和 v 距离小于 q - 1 的点显然必须被选择
for(int p = max(0, q - 1); p <= min(n, q + 1); ++p) {
if(1) ndp[q] = max(ndp[q], dp[v][p] + dp[u][q]);
else ndp[q] = max(ndp[q],dp[u][q]);
}
}
dp[u] = ndp;
}
};
dfs(0, -1);
cout << *max_element(dp[0].begin(), dp[0].end()) << '\n';
}
首先我们先把所有的收益全部加上去。现在就是要花费最小?
我们看 n = 200 n=200 n=200非常小,可以往网络流方向想,因为要花费最小,那么可以转成最小割去求
#include
#define mid ((l + r) >> 1)
#define Lson rt << 1, l , mid
#define Rson rt << 1|1, mid + 1, r
#define ms(a,al) memset(a,al,sizeof(a))
#define log2(a) log(a)/log(2)
#define lowbit(x) ((-x) & x)
#define IOS std::ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define INF 0x3f3f3f3f
#define LLF 0x3f3f3f3f3f3f3f3f
#define f first
#define s second
#define endl '\n'
using namespace std;
const int N = 2e6 + 10, mod = 1e9 + 9;
const int maxn = 6e6 + 10;
const long double eps = 1e-5;
const int EPS = 500 * 500;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
typedef pair<double,double> PDD;
template<typename T> void read(T &x) {
x = 0;char ch = getchar();ll f = 1;
while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
template<typename T, typename... Args> void read(T &first, Args& ... args) {
read(first);
read(args...);
}
int n, m, s, t;
struct node {
int to, nxt, len;
}e[maxn];
int head[maxn], cnt;
inline void add(int from, int to, int len) {
e[cnt] = {to,head[from],len};
head[from] = cnt ++;
e[cnt] = {from,head[to],0};
head[to] = cnt ++;
}
int d[maxn], cur[maxn];
bool bfs() {
ms(d,0);
queue<int> q;
q.push(s);
d[s] = 1;
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if(d[v] || e[i].len <= 0) continue;
q.push(v);
d[v] = d[u] + 1;
}
}
for(int i = 0; i <= t; ++ i) cur[i] = head[i];
return d[t] != 0;
}
int dfs(int u, int flow) {
if(u == t) return flow;
for(int &i = cur[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if(d[u] + 1 != d[v] || e[i].len <= 0) continue;
int delta = dfs(v,min(flow,e[i].len));
if(delta <= 0) continue;
e[i].len -= delta;
e[i^1].len += delta;
return delta;
}
return 0;
}
inline ll get_maxflow() {
ll maxflow = 0, delta = 0;
while(bfs()) {
while(delta = dfs(s,INF)) {
maxflow += delta;
}
}
return maxflow;
}
int w[202], v[202];
int G[202][202];
int poiidx[202];
int vipidx[202][202];
int idx;
int main() {
IOS;
ms(G,INF);
ms(head,-1);
cin >> n;
for(int i = 1; i <= n; ++ i) cin >> w[i], G[i][i] = 0;
for(int i = 0; i < n; ++ i) cin >> v[i];
for(int i = 1; i < n; ++ i) {
int u, v;
cin >> u >> v;
G[u][v] = G[v][u] = 1;
}
for(int k = 1; k <= n; ++ k)
for(int i = 1; i <= n; ++ i)
for(int j = 1; j <= n; ++ j)
G[i][j] = min(G[i][k]+G[k][j],G[i][j]);
s = 0;
for(int i = 1; i <= n; ++ i) poiidx[i] = ++ idx;
for(int i = 1; i <= n; ++ i)
for(int p = 0; p < n; ++ p)
vipidx[i][p] = ++ idx;
t = ++ idx;
for(int i = 1; i <= n; ++ i)
for(int p = 0; p < n; ++ p) {
add(s,vipidx[i][p],p?(v[p]-v[p-1]):(v[p]));
if(p!=0) add(vipidx[i][p],vipidx[i][p-1],INF);
}
for(int i = 1; i <= n; ++ i) add(poiidx[i],t,w[i]);
for(int i = 1; i <= n; ++ i)
for(int j = 1; j <= n; ++ j) {
int dist = G[i][j];
add(vipidx[i][dist],poiidx[j],INF);
}
int ans = n*v[n-1];
cout << ans - get_maxflow();
return 0;
}