- iOS平台RTSP|RTMP直播播放器技术接入说明
音视频牛哥
RTSP播放器RTMP播放器大牛直播SDKobjective-ciOSrtsp播放器iOSrtmp播放器iOSrtspplayeriOSrtmpplayeriOS播放器大牛直播SDK
技术背景大牛直播SDK自2015年发布RTSP、RTMP直播播放模块,迭代从未停止,SmartPlayer功能强大、性能强劲、高稳定、超低延迟、超低资源占用。无需赘述,全自研内核,行业内一致认可的跨平台RTSP、RTMP直播播放器。本文以iOS平台为例,介绍下如何集成RTSP、RTMP播放模块。技术对接系统要求SDK支持iOS9.0及以上版本;支持的CPU架构:arm64(真机调试)。准备工作相关
- vuecli项目实战--管理系统
团团kobebryant
项目前端框架javajavascript前端vue.js
一、项目搭建HBuider直接:新建--项目--填项目名称、选地址、下拉选vue项目(2.6.10)项目结构这个样子:二、前端配置1.路由配置(地址)在src文件夹下创建router文件夹在router文件夹下面创建js文件index.js---配置组件的地址还有导航守卫、路由嵌套也配在这里1.组件路由2.组件路由嵌套3.路由导航记得跟vue对象关联还有导出路由嗷importVuefrom'vue
- 一文读懂MUSIC算法DOA估计的数学原理并仿真
迎风打盹儿
阵列信号处理MUSIC算法DOA估计阵列信号处理信号子空间噪声子空间
一文读懂MUSIC算法DOA估计的数学原理并仿真文章目录前言一、DOA估计基本原理二、MATLAB仿真总结前言MUSIC(MultipleSignalClassification)算法于1979年由R.O.Schmidt提出,是阵列信号处理中广泛应用的经典DOA(DirectionofArrival)估计算法,凭借其超分辨的估计性能受到广泛关注。本文将从数学公式推导的角度出发系统阐述MUSIC算法
- 基于MUSIC算法的DOA估计Matlab仿真
fpga和matlab
★MATLAB算法仿真经验板块1:通信与信号处理matlabMUSIC算法DOA估计
up目录一、理论基础二、核心程序三、测试结果一、理论基础阵列信号处理是信号处理领域内的一个重要分支,在近些年来得到了迅速发展。波达方向(DirectionofArrival,DOA)估计是阵列信号处理的一个重要的研究领域,在雷达、通信、声纳、地震学等领域都有着广泛的应用前景。在DOA估计的发展过程中,人们对高分辨DOA估计算法一直有很大的研究兴趣,并在这一领域取得了很多重要的进展。阵列信号处理主要
- PTA:使用指针进行字符串排序
WZMeiei
数据结构数据结构
使用指针方法输入3个字符串,将它们按从小到大的顺序输出。输入格式:在一行中给出3个长度为n字符串。(1≤n≤1000)输出格式:在一行中,输出3个从小到大排序的字符串。输入样例:在这里给出一组输入。例如:332211输出样例:在这里给出相应的输出。例如:112233代码#include#include#defineMAX_LEN1001intmain(){charstr1[MAX_LEN],str
- YOLOv8到YOLOv11:深度解析目标检测架构的演进
金外飞176
技术前沿目标跟踪人工智能计算机视觉目标检测YOLO神经网络深度学习
YOLOv8到YOLOv11:深度解析目标检测架构的演进在计算机视觉领域,YOLO(YouOnlyLookOnce)系列模型一直是实时目标检测领域的佼佼者。从2015年的YOLOv1到2024年的YOLOv11,这一系列模型经历了快速的迭代和发展,不断刷新着目标检测的性能和效率。然而,由于部分YOLO版本缺乏详细的学术论文和架构图,研究人员和开发者在理解这些模型的工作原理时往往面临挑战。最近,一篇
- 探索AI音乐创作的未来:八款顶尖AI音乐生成工具(本期介绍国外-国内另外专题介绍)
带娃的IT创业者
AIGC程序员创富人工智能音视频ai
探索AI音乐创作的未来:八款顶尖AI音乐生成工具(本期介绍国外-国内另外专题介绍)在科技飞速发展的今天,人工智能(AI)已经渗透到我们生活的方方面面,其中音乐创作也不例外。AI音乐生成工具不仅为专业音乐人提供了新的创作方式,也让普通人能够轻松创作出高质量的音乐作品。本文将介绍八款知名的AI音乐生成工具,帮助你了解它们的特点和优势。1.SunoSuno是一款AI驱动的音乐生成器,能够快速创建高质量的
- 国内那么多的低代码平台,究竟哪家比较强?
有颜有货
低代码平台低代码低代码低代码平台
国内低代码平台哪家强?本人摸索低代码5年多,体验过几十家低代码平台,下面通过2张功能对比图,3K字内容详细告诉你:国内低代码到底哪家强。如果你觉得我的分析对你有一定帮助,还请点赞收藏支持一下,争取能让更多人看到并帮助需要的人。话不多说,先上图。国内主流低代码产品功能对比。(图二在回答末尾)一、织信Informat(企业级低代码平台)功能清单驱动方式:模型驱动字段支持:35种字段,同时支持通过js脚
- 【架构】分层架构 (Layered Architecture)
_君莫笑
软件架构架构c++
一、分层模型基础理论模型是一种常见的软件设计架构,它将软件系统按照功能划分为不同的层次,每个层次都有特定的职责和功能,层与层之间存在清晰的依赖关系。这种架构有助于提高软件的可
- 深入理解DAG任务调度系统:核心原理与实现
AI天才研究院
计算Python实战编程实践python算法dag
1.背景介绍随着大数据、人工智能等领域的发展,任务调度系统的重要性日益凸显。DirectedAcyclicGraph(DAG)任务调度系统是一种常见的任务调度系统,它可以有效地解决多个依赖关系复杂的任务调度问题。本文将深入探讨DAG任务调度系统的核心原理和实现,为读者提供一个深入的理解。1.1背景介绍1.1.1任务调度系统简介任务调度系统是计算机科学中一个重要的研究领域,它主要关注于在并行计算系统
- “傻瓜”学计量——主成分分析法PCA(原理+实操)
nn坚持学stata+matlab
计量算法机器学习人工智能学习笔记学习方法经验分享
提纲:1.PCA原理2.视频推荐:PCA原理spass操作stata操作+matlab实操1.背景在一些领域中,需要对大量数据进行观测。但是可能会带来变量之间具有相关性、分别对每个指标分析带来的偏误等问题。因此,要寻找一个合理的方法,在减少需要分析的直白的同时,尽量减少原指标包含的信息缺失。通常做法是对有关联性的变量进行合并,这样就可以用较少的综合指标分别代表存在于各个变量中的各类信息。常用的方法
- OpenMetadata MySQL 数据库使用率提取管道实现解析
10年JAVA大数据技术研究者
数据治理数据库mysqlopenmetadata源码分析
目录架构概述核心组件源码分析使用率指标定义数据提取流程图源码类图配置与扩展指南架构概述OpenMetadata通过可插拔的元数据摄取框架实现对MySQL使用率数据的采集,核心流程包含三个阶段:数据采集层:从MySQLperformance_schema和sysschema获取原始指标指标处理层:将原始数据转换为统一的使用率指标模型数据存储层:将处理后的指标持久化到OpenMetadata服务核心组
- 华为昇腾服务器部署DeepSeek模型实战
gzroy
人工智能语言模型
在华为的昇腾服务器上部署了DeepSeekR1的模型进行验证测试,记录一下相关的过程。服务器是配置了8块910B3的显卡,每块显卡有64GB显存,根据DeepSeekR1各个模型的参数计算,如果部署R1的Qwen14B版本,需要1张显卡,如果是32B版本,需要2张,Llama70B的模型需要4张显卡。如果是R1全参数版本,则需要32张显卡,也就是4台满配的昇腾服务器。这里先选择32B的模型进行部署
- 腾讯云放大招:3 行代码让 DeepSeek “入住” 微信小程序
BuluAI
腾讯云微信小程序云计算
小程序开发的革命性突破近日,技术圈迎来一则重磅消息——腾讯云推出全新功能,仅需3行代码,就能让DeepSeek大模型“入住”微信小程序,这无疑为开发者们带来了一场革命性的变革。在过去,将大模型能力集成到微信小程序中,过程复杂繁琐,代码量庞大,高门槛让众多开发者望而却步。但如今,腾讯云的这一创新举措,直接将难题“秒解”。开发者们只需轻松敲下3行代码,即可实现DeepSeek大模型在微信小程序中的接入
- Python从0到100(三十九):数据提取之正则(文末免费送书)
是Dream呀
pythonmysql开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- ollama的docker 使用教程
贾斯汀玛尔斯
数据湖AIDocker容器dockereureka容器
好的,下面是Ollama在Docker中的使用教程。我将详细描述如何在Docker容器中运行Ollama,包括安装、配置和常用操作。OllamaDocker使用教程Ollama可以通过Docker运行,提供了一个简洁且隔离的环境来使用AI模型。本文将引导你如何在Docker中设置和使用Ollama。目录前提条件拉取OllamaDocker镜像启动Ollama容器基本命令操作停止容器<
- 基于JavaSpringboot+Vue实现前后端分离房屋租赁系统
网顺技术团队
成品程序项目vue.js前端javascript课程设计springbootmybatis
基于JavaSpringboot+Vue实现前后端分离房屋租赁系统作者主页网顺技术团队欢迎点赞收藏⭐留言文末获取源码联系方式查看下方微信号获取联系方式承接各种定制系统精彩系列推荐精彩专栏推荐订阅不然下次找不到哟Java毕设项目精品实战案例《1000套》感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人文章目录基于JavaSpringboot+
- 接入DeepSeek后,智慧园区安全调度系统的全面提升
Guheyunyi
安全数据分析python智慧城市人工智能信息可视化
随着人工智能技术的快速发展,智慧园区的安全管理正逐步向智能化、自动化方向迈进。DeepSeek作为先进的人工智能解决方案,为智慧园区安全调度系统注入了强大的技术动力。通过接入DeepSeek,智慧园区安全调度系统在多个方面实现了显著提升,进一步增强了园区的安全性、管理效率和用户体验。1.智能化监控:从被动到主动传统的监控系统主要依赖人工查看视频画面,容易出现漏检或误判。接入DeepSeek后,智慧
- 数学推理中在推理规模化下检查假阳性解
硅谷秋水
大模型机器学习人工智能语言模型深度学习机器学习人工智能
25年2月来自中科大和微软亚洲研究院的论文“ExaminingFalsePositivesunderInferenceScalingforMathematicalReasoning”。语言模型的最新进展已带来各种基准测试中数学推理能力的显著提升。然而,大多数基准测试依赖于自动评估方法,这些方法仅使用启发式方法比较最终答案,而不验证底层推理步骤。这种限制导致假阳性解,其中模型可能会产生正确的最终答案
- 清华大学第四发《DeepSeek+DeepResearch 让科研像聊天一样简单》
人工智能
当下科研领域,传统模式急需改变,清华大学第四版《DeepSeek+DeepResearch:让科研像聊天一样简单》全文一共86页,以下是文档的关键内容总结:一、智能组合优势DeepSeek与DeepResearch构建先进技术体系,有强大模型运算、智能数据处理和友好交互界面。模型在数据处理速度、精准度和泛化能力上远超传统模型。数据采集渠道广、处理快,能读取多种格式文件。数据分析深入,可视化直观,还
- HarmonyOS Next智能家居控制系统的模型转换与数据处理实战
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)构建智能家居控制系统中模型转换与数据处理技术的实战应用,基于实际开发经验进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、智能家居系统需求与技术选型(一)功能需求分析设备状态监测需求智能家居控制系统需要实时监测各种智能设
- 2025基金公司私有化部署趋势分析:技术自主权的崛起
标题:基金公司私有化部署:数据主权时代的战略选择与实战指南副标题:从DeepSeek到板栗看板,解密金融巨头如何用私有化部署重塑竞争力【热点引入:一场无声的金融科技革命】2025年2月,、十余家公募基金密集宣布完成DeepSeek大模型的私有化部署,这一现象登上财经热搜榜首。据不完全统计,超60%的头部基金公司已启动私有化部署计划,涉及投研、风控、客户服务等核心场景。这场革命背后的驱动力,正是金融
- HarmonyOS Next数据处理与模型训练优化
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中数据处理与模型训练优化相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、数据处理对模型训练的重要性(一)关键作用强调在HarmonyOSNext的模型训练世界里,数据就如同建筑的基石,而数据处
- 如何选择最佳国外邮箱?注册、登录与购买指南
html
在如今的数字化时代,邮箱已经成为我们日常生活和工作中不可或缺的工具。无论是个人通信、商务往来,还是注册各种在线服务,一个功能强大、稳定可靠的邮箱都是必不可少的。而在众多国外邮箱服务中,如何选择最适合自己的邮箱?本文将以Zoho邮箱为例,为您详细讲解如何选择、注册、登录以及购买国外邮箱服务。一、为什么选择国外邮箱?在选择邮箱服务时,很多人会考虑国外邮箱。以下是国外邮箱的几大优势:隐私保护更强国外邮箱
- cesium(vue)一些面试问题(包含Three.js)
GIS瞧葩菜
vue.jsjavascriptcesium
1.在不同的应用场景和技术栈中,模型加载方法和格式有所不同,下面主要从Web前端三维场景(使用Three.js和cesium)使用Three.js加载模型常见模型格式及加载方法GLTF/GLB格式格式特点:GLTF(GraphicsLibraryTransmissionFormat)是一种开放的、基于JSON的三维模型传输格式,GLB是其二进制版本。它们具有文件小、加载快、支持动画、材质和骨骼等优
- (九万字)面向2025年BOSS直聘人工智能算法工程师高频面试题解析
快撑死的鱼
人工智能回归pythonpytorch
面向2025年BOSS直聘人工智能算法工程师高频面试题解析1.机器学习(ML)理论解析机器学习是让计算机从数据中学习规律的一套方法论,包含监督学习、无监督学习和强化学习等范式。在监督学习中,给定带标签的数据,算法尝试学习从输入到输出的映射关系;无监督学习则在缺乏标签的情况下挖掘数据内在结构;强化学习则让智能体通过与环境交互、依据奖赏反馈来改进策略(Q-learning-Wikipedia)。机器学
- 51单片机-外部中断
三日沐水
嵌入式全套学习教程51单片机嵌入式硬件单片机
以外部中断0为例:主程序中需要有以下代码:EA=1;//打开总中断开关EX0=1;//开外部中断0IT0=0/1;设置外部中断的触发方式P3.2\P3.3为外部中断接口,通过控制P3.2口按键按下实现LED灯反转点亮#include"reg52.h"typedefunsignedcharu8;typedefunsignedintu16;sbitled=P2^0;sbitk3=P3^2;//开关接口
- 人工智能与机器学习入门:基尼系数(Gini Index)和基于熵(Entropy)
基尼系数基于熵机器学习入门
在决策树应用一文中,在构建决策分类树应用决策算法时,介绍了基尼系数(GiniIndex)和基于熵(Entropy)两种算法。本文通过实例来更加深入的介绍一下这两个算法。仍然以简单的数据为例:id喜欢颜色是否有喉结身高性别1绿否165女2蓝是170男3粉否172女4绿是175男基尼系数分别对喜欢颜色是否有喉结求基尼系数如下:喜欢的颜色id喜欢颜色性别1绿女2蓝男3粉女4绿男对于姓别女分类而言,数据如
- AI 如何接口调试?可以展示推理过程
人工智能深度学习机器学习
如何在开发AI接口的同时,能看到实时的AI回复,避免传统的轮询方式,而无需长时间等待。常用的AI模型(比如Deepseek、Gemini)都是支持流式输出,那有没有一款API接口软件可以实现这功能?近期Apifox增强了调试SSE接口功能,实现了发起HTTP请求流式响应就会自动合并为可读文本,实时以自然语言呈现响应。而且针对Deepseek还能展示思考推理过程!这大大降低AI应用开发难度,有图为证
- FakeApp 技术浅析(一)
爱研究的小牛
AIGC—深度伪造虚拟现实人工智能AIGC深度学习机器学习
FakeApp是一款早期的深度伪造(Deepfake)工具,最初于2018年发布,用于生成和编辑换脸视频。尽管FakeApp已经不再更新,但它在深度伪造技术的发展中起到了重要作用。1.技术背景与理论基础1.1生成对抗网络(GANs)生成对抗网络(GANs)是深度学习领域中的一种重要模型,由生成器(Generator)和判别器(Discriminator)组成。生成器负责生成逼真的数据(如图像、视频
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><