哈希散列表——拉链发、空闲寻址法——模板

哈希散列表——拉链发、空闲寻址法——模板_第1张图片

空闲寻址法

#include 
#include 
using namespace std;

//开放寻址法一般开 数据范围的 2~3倍, 这样大概率就没有冲突了
const int N = 2e5 + 3;        //大于数据范围的第一个质数
const int null = 0x3f3f3f3f;  //规定空指针为 null 0x3f3f3f3f

int h[N];

int find(int x) {
    int t = (x % N + N) % N;
    while (h[t] != null && h[t] != x) {
        t++;
        if (t == N) {
            t = 0;
        }
    }
    return t;  //如果这个位置是空的, 则返回的是他应该存储的位置
}

int n;

int main() {
    cin >> n;

    memset(h, 0x3f, sizeof h);  //规定空指针为 0x3f3f3f3f

    while (n--) {
        string op;
        int x;
        cin >> op >> x;
        if (op == "I") {
            h[find(x)] = x;
        } else {
            if (h[find(x)] == null) {
                puts("No");
            } else {
                puts("Yes");
            }
        }
    }
    return 0;
}

拉链法

#include 
#include 

using namespace std;

const int N = 1e5 + 3;  // 取大于1e5的第一个质数,取质数冲突的概率最小 可以百度

//* 开一个槽 h
int h[N], e[N], ne[N], idx;  //邻接表

void insert(int x) {
    // c++中如果是负数 那他取模也是负的 所以 加N 再 %N 就一定是一个正数
    int k = (x % N + N) % N;
    e[idx] = x;
    ne[idx] = h[k];
    h[k] = idx++;
}

bool find(int x) {
    //用上面同样的 Hash函数 讲x映射到 从 0-1e5 之间的数
    int k = (x % N + N) % N;
    for (int i = h[k]; i != -1; i = ne[i]) {
        if (e[i] == x) {
            return true;
        }
    }
    return false;
}
int n;

int main() {
    cin >> n;
    memset(h, -1, sizeof h);  //将槽先清空 空指针一般用 -1 来表示
    while (n--) {
        string op;
        int x;
        cin >> op >> x;
        if (op == "I") {
            insert(x);
        } else {
            if (find(x)) {
                puts("Yes");
            } else {
                puts("No");
            }
        }
    }
    return 0;
}

你可能感兴趣的:(算法模版,散列表)