- openwrt路由器禁止某台设备上网操作失败问题解决
无级程序员
智能路由openwrtrax3000m智能路由
家有一台移动RAX3000M,改造成了多功能服务器,同时,还能限制小孩上网,但时间长了就发现移除可添加限制上网设备时无法操作。到处搜索也没找到它是怎么限制的,于是用mac地址在/etc目录下搜索,搜索命令:grep-r"62:19"/etc上面的“62:19”是被限制了上网的一个设备mac地址中的一部分。终于发现了是配置在/etc/config/security里面,内容如下:configfire
- easyswoole学习记录
司江龙
swoolePHPeasyswooleswoole
php-fpm的工作方式php-fpm就是php-fastcgi进程管理器主要工作的就是mastr进程,主要和linux进行一个协调,当请求从nginx到fpm的时候,master会把请求交给自己下面管理的子进程一个池模型,问题:一个work进程内只会处理一个请求,也就是说这个进程内在同一时刻只会处理一个request请求,不会处理多个,所以一台服务器的并发数就取决于服务器开启了多少个work进程
- python学智能算法(八)|决策树
西猫雷婶
人工智能python学习笔记机器学习python决策树开发语言
【1】引言前序学习进程中,已经对KNN邻近算法有了探索,相关文章链接为:python学智能算法(七)|KNN邻近算法-CSDN博客但KNN邻近算法有一个特点是:它在分类的时候,不能知晓每个类别内事物的具体面貌,只能获得类别,停留在事物的表面。为了进一步探索事物的内在特征,就需要学习新的算法。本篇文章就是在KNN的基础上学习新算法:决策树。【2】原理分析在学习决策树执之前,需要先了解香农熵。本科学控
- 基于流程的记事梳理rm -i学习步骤
鸭梨山大哎
linux学习
内在化理解rm-i回忆一下你整理书架的经历。书架上摆满了各种书籍(文件),你想要扔掉一些不再需要的书。普通的清理方式就像直接使用rm命令,可能会不小心把一些本不想扔掉的书也一起扔掉了。而当你使用类似rm-i的方式时,每拿起一本书准备扔掉,你都会先问自己:“我真的不再需要这本书了吗?”只有在你确认后,才会把书扔掉。这种方式让你在整理书架时更加谨慎,减少误扔重要书籍的可能性,和在电脑上使用rm-i谨慎
- 【NLP】 5. Word Analogy Task(词类比任务)与 Intrinsic Metric(内在度量)
pen-ai
NLP机器学习自然语言处理word人工智能
WordAnalogyTask(词类比任务)定义:WordAnalogyTask是用于评估词向量质量的内在指标(IntrinsicMetric)。该任务基于这样的假设:如果词向量能够捕捉单词之间的语义关系,那么这些关系应该能够在向量空间中保持一定的结构。示例:在一个理想的词向量空间中,单词之间的关系应该满足如下等式:king−man+woman≈queenking−man+woman≈queenk
- 手写机器学习算法系列——K-Means聚类算法(一)
木有鱼丸223
手写机器学习算法系列机器学习算法聚类
代码仓库(数字空间项目,GN可上)不想看的话,我也将代码上传到本博客中。1.聚类算法简介在数据科学和机器学习领域,聚类(Clustering)算法是一种无监督学习方法,它将相似的对象分到同一个组,而不同的对象则被分到不同的组。这种算法的主要目标是根据数据的特征进行分组,以此找出数据的内在结构。聚类算法的一个核心特点就是它并不需要预先知道数据的类别,而是通过算法自动进行分组。在实际应用中,我们常见的
- 【AI论文】TPDiff:时序金字塔视频扩散模型
东临碣石82
人工智能算法
摘要:视频扩散模型的发展揭示了一个重大挑战:巨大的计算需求。为了缓解这一挑战,我们注意到扩散的反向过程具有内在的熵减少特性。鉴于视频模态中的帧间冗余,在高熵阶段保持全帧率是不必要的。基于这一洞见,我们提出了TPDiff,一个统一的框架,用于提高训练和推理效率。通过将扩散过程分为几个阶段,我们的框架在扩散过程中逐步增加帧率,仅在最后阶段采用全帧率,从而优化计算效率。为了训练多阶段扩散模型,我们引入了
- python 获取鼠标在屏幕上的具体位置以及动作,判断鼠标是否在浏览器内
计算机辅助工程
python计算机外设开发语言
python获取鼠标在屏幕上的具体位置以及动作,判断鼠标是否在浏览器内在Python中,要获取鼠标在屏幕上的具体位置以及动作,并判断鼠标是否在浏览器内,我们可以使用pyautogui库。pyautogui是一个非常强大的库,可以用来模拟鼠标操作、屏幕截图、获取屏幕尺寸和分辨率等。安装pyautogui首先,确保你已经安装了pyautogui。如果还没有安装,可以通过pip安装:pipinstall
- 芒格的双轨分析:结合定性和定量的投资方法
SuperAGI2025
DeepSeekai
芒格的"双轨分析":结合定性和定量的投资方法关键词:芒格、双轨分析、定性分析、定量分析、投资方法、系统分析摘要:芒格的“双轨分析”是一种结合定性和定量分析的投资方法,旨在通过综合分析企业的内在价值和市场趋势,帮助投资者做出更科学的投资决策。本文将详细介绍双轨分析的背景、核心概念、算法原理、系统架构及实际应用,帮助读者全面理解并掌握这一方法。第一部分:芒格的双轨分析基础第1章:投资分析的演变与双轨分
- 深度学习核心技术深度解析
月落星还在
深度学习深度学习人工智能
一、深度学习的本质与核心思想定义:通过多层非线性变换,自动学习数据层次化表征的机器学习方法核心突破:表征学习:自动发现数据的内在规律,无需人工设计特征端到端学习:直接从原始输入到最终输出,消除中间环节的信息损失分布式表示:通过神经元激活模式的组合,指数级提升表达能力数学本质:f(x)=WLσ(WL−1σ(...σ(W1x+b1)...)+bL−1)+bLf(x)=W_{L}σ(W_{L-1}σ(.
- 数学建模与图形建模资源全解析
点我头像干啥
Ai数学建模人工智能python深度学习数据挖掘分类
引言在当今的数据驱动时代,数学建模与图形建模已成为解决复杂问题、揭示数据内在规律的重要工具。无论是科学研究、工程设计,还是商业分析、决策支持,建模技术都发挥着举足轻重的作用。本文旨在为数学建模与图形建模的初学者及进阶者提供一份详尽的资源指南,涵盖软件工具、学习资料、在线课程、社区论坛等多个方面,帮助大家更好地掌握这些技能。一、数学建模资源概览1.数学建模软件工具数学建模离不开强大的软件支持。以下是
- leetcode 贪心算法
gufly-
leetcode贪心算法算法
刷题记录以局部最优推出整体最优,且想不到反例,则可以尝试贪心算法455.分发饼干从后向前遍历孩子数组,用大饼干满足胃口大,并统计满足小孩数量classSolution(object):deffindContentChildren(self,g,s):g.sort()s.sort()res=0ind=len(s)-1foriinrange(len(g)-1,-1,-1):ifind>=0ands[i
- CM311-1a刷armbian全纪录
godfrey1108
androidadb
小孩上小学了,难免要打印东西,但是新的打印机又太贵,淘了个400块的兄弟打印机,只有USB连接那种老式的,想到S905lsade芯片又很多种玩法,可以刷armbian,自己心热也买了一个来玩,结果没想到买了就入坑,网上各种资料搜不到,经常只是下班来搞一下,断断续续搞了一个月才搞定,大佬勿喷啊,纯属自己玩儿,自己摸索,而且也是偶尔搞一下,所以很慢。1、下载ophub大佬的armbian系统,一定要下
- 研究发现,LLM基于数据的内在含义进行表示,并以其主导语言推理
新加坡内哥谈技术
人工智能自然语言处理语言模型深度学习copilot
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/【本周AI新闻:Deepseek崛起背后:AI智能代理时代正式到来?】https://w
- 征程 6 工具链 BEVPoolV2 算子使用教程 1 - BEVPoolV2 算子详解
算法自动驾驶
1.引言当前,地平线征程6工具链已经全面支持了BEVPoolingV2算子,并与mmdetection3d的实现完成了精准对齐。然而,需要注意的是,此算子因其内在的复杂性以及相关使用示例的稀缺,致使部分用户在实际运用过程中遭遇了与预期不符的诸多问题。在这样的背景下,本文首先会对BEVPoolingV2的实现进行全方位、细致入微的剖析讲解,,让复杂的原理变得清晰易懂。随后,还会通过代表性的示例,来进
- 美股数据:历史高频分钟回测的获取与深度分析20250305
level2Tick
美股分钟高频历史行情金融大数据数据库
美股数据:历史高频分钟回测的获取与深度分析20250305在金融分析和投资决策的复杂领域中,美股历史分钟高频数据发挥着不可替代的作用。这些数据以其详尽性,记录了股票每分钟的价格和成交量等关键信息,使投资者能够深入挖掘市场动态和价格波动的内在规律。通过对这些高频数据的深入分析,投资者不仅能够更准确地判断市场走势,还能及时发现并利用潜在的交易机会,从而制定出更具针对性和实效性的交易策略。此外,分钟数据
- 两个栈模拟实现队列
苦逼工科男
C/C++算法模拟队列栈模拟队列
用两个栈模拟实现一个队列,如果栈的容量分别是O和P(O>P),那么模拟实现的队列最大容量是()?A:2O+1B:O+PC:2O-1D:2P+1正确答案:D两个栈模拟实现队列_Hey小孩的博客-CSDN博客_两个栈模拟队列记stack1的容量是O,stack2的容量是P,(O>P),将stack1作为存储空间,stack2作为输出的缓冲空间。入队:1、将P个元素push到stack1中;2、再将该P
- 人生必读书籍《高效能人士的七个习惯》
Hello kele
经验分享
最近研读了史蒂芬・柯维的《高效能人士的七个习惯》,这本书犹如一盏明灯,照亮了我在个人成长与自我管理道路上前行的方向,让我收获颇丰。这七个习惯层层递进,构建起了高效能人士的底层逻辑,以下是对每个习惯的含义介绍及案例分析。积极主动:意味着个人要为自己的选择和行为负责,从内在驱动自己去应对生活和工作,而不是被外界因素所左右。它不仅是一种态度,更是一种基于个人价值观和原则的行动选择。例如埃隆・马斯克,他不
- Python循环else逆天操作!90%程序员竟不知?
筱涵哥
Python基础入门python
你是不是经常遇到这样的场景?问题1:在循环里查找元素,没找到时想提示“未找到”,但代码写得像“俄罗斯套娃”。问题2:处理完一堆任务后,想执行“收尾操作”,却不得不加一个全局变量当“信号灯”。问题3:文件检查、数据分析时,想优雅地输出“一切正常”,结果代码比问题还复杂。传统写法要么冗长,要么逻辑混乱,像个“迷路的小孩”一、作死现场:else引发的数据灵异事件1.用户失踪谜案#想找VIP用户,找不到就
- LangChain —— 多模态大模型的 prompt template
Miyazaki_Hayao
LangChainlangchainprompt
文章目录一、如何直接将多模态数据传输给模型二、如何使用mutimodalprompts一、如何直接将多模态数据传输给模型 在这里,我们演示了如何将多模式输入直接传递给模型。对于其他的支持多模态输入的模型提供者,langchain在类中提供了内在逻辑来转化为期待的格式。 传入图像最常用的方法是将其作为字节字符串传入。这应该适用于大多数模型集成。importbase64importhttpximage
- 梯度下降法(Gradient Descent) -- 现代机器学习的血液
AOIWB
机器学习人工智能python
梯度下降法(GradientDescent)–现代机器学习的血液梯度下降法是现代机器学习最核心的优化引擎。本文从数学原理、算法变种、应用场景到实践技巧,用三维可视化案例和代码实现揭示其内在逻辑,为你构建完整的认知体系。优化算法一、梯度下降法的定义与核心原理定义:梯度下降法是一种通过迭代更新参数来最小化目标函数的优化算法,其核心思想是沿着当前点的负梯度方向逐步逼近函数最小值。数学表达:参数更新公式为
- 指纹识别系统架构
mickey0380
生物识别系统架构人工智能指纹识别模式识别
目录1.系统架构1.1指纹采集模块1.2指纹处理模块1.3指纹登记模块1.4指纹识别模块1.5指纹识别决策模块1.6管理模块1.6.1存储管理1.6.2传输管理1.6.3安全管理1.7应用开放功能1.7.1指纹登记功能1.7.2指纹验证功能1.7.3指纹辨识功能2.工作流程2.1指纹登记2.2指纹验证2.3指纹辨识3.系统安全3.1系统内在限制3.2系统外部攻击1.系统架构《GB∕T37076-2
- 读心术思维导图
胡西风_foxww
#思维导图读心术思维导图模板markdown
读心术思维导图把自己变成他人贴近对方的肢体行为模仿姿势延迟动作不要过于精确模仿对方的声音模仿面部表情同样的速度和节奏配合对方的精神状态注意对方的精力值,让精力充沛起来的练习言行一致,情绪状态看懂他人,语言、思维方式视觉记忆视觉记忆听觉记忆动觉记忆EAC模型视觉创建视觉回忆听觉创建听觉回忆动觉记忆自言自语(内在的推理者)听觉记忆为主导的人语习惯与思维方式语速快慢节奏行话惯语口头禅听觉词汇(听、叫、问
- GPS用CN0而不是SNR来表示接收机解调出的卫星信号的强弱
超能力MAX
fpga开发
CN0定义为载波噪声功率谱密度比,载波功率是指2.046MHz带宽内的总功率,而噪声功率谱密度比(不考虑系统引入噪声)为每Hz的热噪声,常温为常数-174dBm/Hz。CN0+10log(带宽)=SNR,这是两者之间的内在联系。从上述公式可以看出,CN0跟带宽没关系,而SNR跟带宽有关系。由于CN0跟带宽没关系,因此利用CN0可以直接比较不同带宽的系统的性能。例如,对于GPSC码,扩频码速率是1.
- 格雷厄姆的价格与价值区分:市场先生的教训
AGI大模型与大数据研究院
DeepSeek大数据人工智能物联网ai
格雷厄姆的价格与价值区分:市场先生的教训关键词:格雷厄姆,价格与价值,市场先生,价值投资,内在价值,安全边际,投资策略摘要:本文深入探讨了格雷厄姆的价值投资理论,重点分析了价格与价值的区分方法,结合市场先生的比喻,揭示了市场波动与投资者心理的关系。通过数学模型、算法原理和系统设计,本文详细讲解了如何在实际投资中应用格雷厄姆的理论,并提供了实战案例和最佳实践建议。第一部分:引言第1章:引言1.1本书
- GIS地图、轨道交通与智能驾驶UI设计:未来交通的智能化探索
UI设计兰亭妙微
ui界面设计
随着科技的飞速发展,我们正迎来一个高度智能化的未来。在这个时代背景下,GIS(地理信息系统)、轨道交通以及智能驾驶UI设计正逐步成为推动交通行业变革的重要力量。本文将深入探讨这三者之间的内在联系及其在未来交通系统中的应用前景。GIS地图:交通信息的智能化集成GIS地图是一种集成了空间数据管理和分析功能的技术系统,它能够实现对地理分布数据的采集、储存、管理、运算、分析、显示和描述。在轨道交通领域,G
- 当你给大模型一段输入之后,它是怎么得到答案的
牛不才
000-大模型chatgptAIGC文心一言gptllamaagiprompt
1.先把问题“嚼碎”(输入处理)比如你问:“太阳为什么东升西落?”切分知识点:模型会把这句话拆解成词汇单元(比如:“太阳”“为什么”“东”“升”“西”“落”),就像你背单词时先拆解句子。2.动用毕生所学(模型“回想”知识)大模型并不是真有一个“数据库”,而是依靠训练时海量的知识联结:(类似人类的经验积累)内在规律:从上学过的教材、论文、百科中记住过“地球自转导致太阳视运动”这个常识。猜测套路:统计
- 【项目日记】仿RabbitMQ实现消息队列 --- 模块设计
叫我龙翔
我的项目rabbitmq分布式c++运维网络http服务器
你要的答案不在书本里,也不能靠别人来解决,除非你想一辈子当小孩。你必须在自我内部找到答案,感受到该做的正确事情。---《献给阿尔吉侬的花束》---仿RabbitMQ实现消息队列1数据管理模块1.1交换机数据管理模块1.2队列数据管理模块1.3绑定数据管理模块1.4消息数据管理模块1.5虚拟机数据管理模块2功能模块2.1路由匹配模块2.2消费者管理模块2.3信道管理模块2.4连接管理模块3服务器模块
- [译] .NET 8 中的硬件内在函数(支持 Wasm 和 AVX-512)
zyl910
SIMDc#.netSIMDwasm
原文链接:https://devblogs.microsoft.com/dotnet/dotnet-8-hardware-intrinsics/HardwareIntrinsicsin.NET8TannerGooding[MSFT]December11th,2023译文:.NET8中的硬件内在函数坦纳·古丁[MSFT]2023年12月11日.NET在通过JIT编译器本质上理解的API提供对附加硬件
- 深度学习模型:原理、架构与应用
一ge科研小菜菜
工具深度学习
深度学习(DeepLearning)是机器学习中的一个分支,基于人工神经网络的发展,尤其是多层神经网络的研究,使其在语音识别、图像处理、自然语言处理等领域取得了显著进展。深度学习的核心是通过大量数据的训练,学习到数据的内在结构和模式,并且具备自动从复杂的输入中提取特征的能力。本文将从深度学习的基本原理、常见模型、训练技巧、应用领域及其面临的挑战等方面进行详细探讨,帮助理解深度学习模型如何在现代科技
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include