目标检测算法改进系列之Backbone替换为InceptionNeXt

InceptionNeXt

受 Vision Transformer 长距离依赖关系建模能力的启发,最近一些视觉模型开始上大 Kernel 的 Depth-Wise 卷积,比如一篇出色的工作 ConvNeXt。虽然这种 Depth-Wise 的算子只消耗少量的 FLOPs,但由于高昂的内存访问成本 (memory access cost),在高性能的计算设备上会损害模型的效率。举例来说,ConvNeXt-T 和 ResNet-50 的 FLOPs 相似,但是在 A100 GPU 上进行全精度训练时,只能达到 60% 的吞吐量。

原文地址:InceptionNeXt: When Inception Meets ConvNeXt

针对这个问题,一种提高速度的方法是减小 Kernel 的大小,但是会导致显著的性能下降。目前还不清楚如何在保持基于大 Kernel 的 CNN 模型性能的同时加速。

为了解决这个问题,受 Inception 的启发,本文作者提出将大 Kernel 的 Depth-Wise 卷积沿 channel 维度分解为四个并行分支,即小的矩形卷积核:两个正交的带状卷积核和一个恒等映射。通过这种新的 Inception Depth-Wise 卷积,作者构建了一系列网络,称为 IncepitonNeXt,这些网络不仅具有高吞吐量,而且还保持了具有竞争力的性能。例如,InceptionNeXt-T 的训练吞吐量比 ConvNeXt-T 高1.6倍,在 ImageNet-1K 上的 top-1 精度提高了 0.2%。
论文目标不是扩大卷积核。相反是以效率为目标,在保持相当的性能的前提下,以简单和速度友好的方式分解大卷积核。

目标检测算法改进系列之Backbone替换为InceptionNeXt_第1张图片

InceptionNeXt代码实现

"""
InceptionNeXt implementation, paper: https://arxiv.org/abs/2303.16900
Some code is borrowed from timm: https://github.com/huggingface/pytorch-image-models
"""

from functools import partial

import torch
import torch.nn as nn
import numpy as np

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models import checkpoint_seq, to_2tuple
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model

__all__ = ['inceptionnext_tiny', 'inceptionnext_small', 'inceptionnext_base', 'inceptionnext_base_384']

class InceptionDWConv2d(nn.Module):
    """ Inception depthweise convolution
    """
    def __init__(self, in_channels, square_kernel_size=3, band_kernel_size=11, branch_ratio=0.125):
        super().__init__()
        
        gc = int(in_channels * branch_ratio) # channel numbers of a convolution branch
        self.dwconv_hw = nn.Conv2d(gc, gc, square_kernel_size, padding=square_kernel_size//2, groups=gc)
        self.dwconv_w = nn.Conv2d(gc, gc, kernel_size=(1, band_kernel_size), padding=(0, band_kernel_size//2), groups=gc)
        self.dwconv_h = nn.Conv2d(gc, gc, kernel_size=(band_kernel_size, 1), padding=(band_kernel_size//2, 0), groups=gc)
        self.split_indexes = (in_channels - 3 * gc, gc, gc, gc)
        
    def forward(self, x):
        x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1)
        return torch.cat(
            (x_id, self.dwconv_hw(x_hw), self.dwconv_w(x_w), self.dwconv_h(x_h)), 
            dim=1,
        )


class ConvMlp(nn.Module):
    """ MLP using 1x1 convs that keeps spatial dims
    copied from timm: https://github.com/huggingface/pytorch-image-models/blob/v0.6.11/timm/models/layers/mlp.py
    """
    def __init__(
            self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU,
            norm_layer=None, bias=True, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)

        self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
        self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
        self.act = act_layer()
        self.drop = nn.Dropout(drop)
        self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.norm(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        return x


class MlpHead(nn.Module):
    """ MLP classification head
    """
    def __init__(self, dim, num_classes=1000, mlp_ratio=3, act_layer=nn.GELU,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., bias=True):
        super().__init__()
        hidden_features = int(mlp_ratio * dim)
        self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
        self.act = act_layer()
        self.norm = norm_layer(hidden_features)
        self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = x.mean((2, 3)) # global average pooling
        x = self.fc1(x)
        x = self.act(x)
        x = self.norm(x)
        x = self.drop(x)
        x = self.fc2(x)
        return x


class MetaNeXtBlock(nn.Module):
    """ MetaNeXtBlock Block
    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(
            self,
            dim,
            token_mixer=InceptionDWConv2d,
            norm_layer=nn.BatchNorm2d,
            mlp_layer=ConvMlp,
            mlp_ratio=4,
            act_layer=nn.GELU,
            ls_init_value=1e-6,
            drop_path=0.,
            
    ):
        super().__init__()
        self.token_mixer = token_mixer(dim)
        self.norm = norm_layer(dim)
        self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer)
        self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.token_mixer(x)
        x = self.norm(x)
        x = self.mlp(x)
        if self.gamma is not None:
            x = x.mul(self.gamma.reshape(1, -1, 1, 1))
        x = self.drop_path(x) + shortcut
        return x


class MetaNeXtStage(nn.Module):
    def __init__(
            self,
            in_chs,
            out_chs,
            ds_stride=2,
            depth=2,
            drop_path_rates=None,
            ls_init_value=1.0,
            act_layer=nn.GELU,
            norm_layer=None,
            mlp_ratio=4,
    ):
        super().__init__()
        self.grad_checkpointing = False
        if ds_stride > 1:
            self.downsample = nn.Sequential(
                norm_layer(in_chs),
                nn.Conv2d(in_chs, out_chs, kernel_size=ds_stride, stride=ds_stride),
            )
        else:
            self.downsample = nn.Identity()

        drop_path_rates = drop_path_rates or [0.] * depth
        stage_blocks = []
        for i in range(depth):
            stage_blocks.append(MetaNeXtBlock(
                dim=out_chs,
                drop_path=drop_path_rates[i],
                ls_init_value=ls_init_value,
                act_layer=act_layer,
                norm_layer=norm_layer,
                mlp_ratio=mlp_ratio,
            ))
            in_chs = out_chs
        self.blocks = nn.Sequential(*stage_blocks)

    def forward(self, x):
        x = self.downsample(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        return x


class MetaNeXt(nn.Module):
    r""" MetaNeXt
        A PyTorch impl of : `InceptionNeXt: When Inception Meets ConvNeXt`  - https://arxiv.org/pdf/2203.xxxxx.pdf
    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 9, 3)
        dims (tuple(int)): Feature dimension at each stage. Default: (96, 192, 384, 768)
        token_mixers: Token mixer function. Default: nn.Identity
        norm_layer: Normalziation layer. Default: nn.BatchNorm2d
        act_layer: Activation function for MLP. Default: nn.GELU
        mlp_ratios (int or tuple(int)): MLP ratios. Default: (4, 4, 4, 3)
        head_fn: classifier head
        drop_rate (float): Head dropout rate
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(
            self,
            in_chans=3,
            num_classes=1000,
            depths=(3, 3, 9, 3),
            dims=(96, 192, 384, 768),
            token_mixers=nn.Identity,
            norm_layer=nn.BatchNorm2d,
            act_layer=nn.GELU,
            mlp_ratios=(4, 4, 4, 3),
            head_fn=MlpHead,
            drop_rate=0.,
            drop_path_rate=0.,
            ls_init_value=1e-6,
            **kwargs,
    ):
        super().__init__()

        num_stage = len(depths)
        if not isinstance(token_mixers, (list, tuple)):
            token_mixers = [token_mixers] * num_stage
        if not isinstance(mlp_ratios, (list, tuple)):
            mlp_ratios = [mlp_ratios] * num_stage


        self.num_classes = num_classes
        self.drop_rate = drop_rate
        self.stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            norm_layer(dims[0])
        )

        self.stages = nn.Sequential()
        dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        stages = []
        prev_chs = dims[0]
        # feature resolution stages, each consisting of multiple residual blocks
        for i in range(num_stage):
            out_chs = dims[i]
            stages.append(MetaNeXtStage(
                prev_chs,
                out_chs,
                ds_stride=2 if i > 0 else 1, 
                depth=depths[i],
                drop_path_rates=dp_rates[i],
                ls_init_value=ls_init_value,
                act_layer=act_layer,
                norm_layer=norm_layer,
                mlp_ratio=mlp_ratios[i],
            ))
            prev_chs = out_chs
        self.stages = nn.Sequential(*stages)
        self.num_features = prev_chs
        self.apply(self._init_weights)
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for s in self.stages:
            s.grad_checkpointing = enable

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'norm'}
    
    def forward(self, x):
        input_size = x.size(2)
        scale = [4, 8, 16, 32]
        features = [None, None, None, None]
        x = self.stem(x)
        features[scale.index(input_size // x.size(2))] = x
        for idx, layer in enumerate(self.stages):
            x = layer(x)
            if input_size // x.size(2) in scale:
                features[scale.index(input_size // x.size(2))] = x
        return features

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.0', 'classifier': 'head.fc',
        **kwargs
    }

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

default_cfgs = dict(
    inceptionnext_tiny=_cfg(
        url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth',
    ),
    inceptionnext_small=_cfg(
        url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth',
    ),
    inceptionnext_base=_cfg(
        url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth',
    ),
    inceptionnext_base_384=_cfg(
        url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth',
        input_size=(3, 384, 384), crop_pct=1.0,
    ),
)

def inceptionnext_tiny(pretrained=False, **kwargs):
    model = MetaNeXt(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), 
                      token_mixers=InceptionDWConv2d,
                      **kwargs
    )
    model.default_cfg = default_cfgs['inceptionnext_tiny']
    if pretrained:
        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
        model.load_state_dict(state_dict)
    return model

def inceptionnext_small(pretrained=False, **kwargs):
    model = MetaNeXt(depths=(3, 3, 27, 3), dims=(96, 192, 384, 768), 
                      token_mixers=InceptionDWConv2d,
                      **kwargs
    )
    model.default_cfg = default_cfgs['inceptionnext_small']
    if pretrained:
        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
        model.load_state_dict(state_dict)
    return model

def inceptionnext_base(pretrained=False, **kwargs):
    model = MetaNeXt(depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024), 
                      token_mixers=InceptionDWConv2d,
                      **kwargs
    )
    model.default_cfg = default_cfgs['inceptionnext_base']
    if pretrained:
        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
        model.load_state_dict(state_dict)
    return model

def inceptionnext_base_384(pretrained=False, **kwargs):
    model = MetaNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], 
                      mlp_ratios=[4, 4, 4, 3],
                      token_mixers=InceptionDWConv2d,
                      **kwargs
    )
    model.default_cfg = default_cfgs['inceptionnext_base_384']
    if pretrained:
        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
        model.load_state_dict(state_dict)
    return model

if __name__ == '__main__':
    model = inceptionnext_tiny(pretrained=False)
    inputs = torch.randn((1, 3, 640, 640))
    for i in model(inputs):
        print(i.size())

Backbone替换

yolo.py修改

def parse_model函数

def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    is_backbone = False
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        try:
            t = m
            m = eval(m) if isinstance(m, str) else m  # eval strings
        except:
            pass
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                try:
                    args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                except:
                    args[j] = a

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        elif isinstance(m, str):
            t = m
            m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {inceptionnext_tiny, inceptionnext_small}: #可添加更多Backbone
            m = m(*args)
            c2 = m.channel
        else:
            c2 = ch[f]
        if isinstance(c2, list):
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

def _forward_once函数

def _forward_once(self, x, profile=False, visualize=False):
    y, dt = [], []  # outputs
    for m in self.model:
        if m.f != -1:  # if not from previous layer
            x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
        if profile:
            self._profile_one_layer(m, x, dt)
        if hasattr(m, 'backbone'):
            x = m(x)
            for _ in range(5 - len(x)):
                x.insert(0, None)
            for i_idx, i in enumerate(x):
                if i_idx in self.save:
                    y.append(i)
                else:
                    y.append(None)
            x = x[-1]
        else:
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
        if visualize:
            feature_visualization(x, m.type, m.i, save_dir=visualize)
    return x

创建.yaml配置文件

# YOLOv5  by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, inceptionnext_tiny, [False]], # 4
   [-1, 1, SPPF, [1024, 5]],  # 5
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]], # 6
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7
   [[-1, 3], 1, Concat, [1]],  # cat backbone P4 8
   [-1, 3, C3, [512, False]],  # 9

   [-1, 1, Conv, [256, 1, 1]], # 10
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3 12
   [-1, 3, C3, [256, False]],  # 13 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]], # 14
   [[-1, 10], 1, Concat, [1]],  # cat head P4 15
   [-1, 3, C3, [512, False]],  # 16 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]], # 17
   [[-1, 5], 1, Concat, [1]],  # cat head P5 18
   [-1, 3, C3, [1024, False]],  # 19 (P5/32-large)

   [[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

你可能感兴趣的:(目标检测算法改进系列,目标检测,算法,人工智能,pytorch,深度学习,计算机视觉,python)