项目地址:https://github.com/square/leakcanary/tree/v2.5
官方使用说明:https://square.github.io/leakcanary/
一、使用
1.1 工程引入
2.0之后的版本,不需要在application中配置LeakCanary.install(this),只在build.gradle配置引入库即可:
dependencies {
// debugImplementation because LeakCanary should only run in debug builds.
debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.5’
}
运行项目如果有如下log打印,证明leakCanaray已经安装好,能正常运行了:
D LeakCanary: LeakCanary is running and ready to detect leaks
1.2 触发场景
Activity、Fragment、Fragment View实例被销毁,ViewModel被清理场景下会自动触发检测。
1.3 自动检测和上报工作流
监控对象回收情况->如有泄漏dump heap ->分析heap ->输出结果。
1.4 局限性:无法检测根Activity及Service。
因为接入和测试成本低,因此比较推荐使用它对常规业务的内存泄漏问题做一个初步筛查。
2.0之前版本的使用参考之前文章:性能优化工具(九)-LeakCanary
二、源码分析
2.1 初始化
因为没有了LeakCanary.install(this),且类名发生了变化,所以框架初始化的地方有点难找,全局搜索install,还真能找到。(注:leakCanaray V2.5是kotlin代码)
internal sealed class AppWatcherInstaller : ContentProvider() {
override fun onCreate(): Boolean {
val application = context!!.applicationContext as Application
AppWatcher.manualInstall(application)
return true
}
}
这里初始化是在ContentProvider.onCreate,它执行在application.onCreate之前,因此省略了在客户端application install的步骤。接着看:AppWatcher.manualInstall ->InternalAppWatcher.install
leakcanary/internal/InternalAppWatcher.kt
fun install(application: Application) {
checkMainThread()
if (this::application.isInitialized) {
return
}
InternalAppWatcher.application = application
if (isDebuggableBuild) {
SharkLog.logger = DefaultCanaryLog()
}
val configProvider = { AppWatcher.config }
ActivityDestroyWatcher.install(application, objectWatcher, configProvider)
FragmentDestroyWatcher.install(application, objectWatcher, configProvider)
onAppWatcherInstalled(application)
}
这里分别对Activity和Fragment进行了install.
2.2 内存泄漏监控
这里以 ActivityDestroyWatcher.install为例分析
ActivityDestroyWatcher.kt
internal class ActivityDestroyWatcher private constructor(
private val objectWatcher: ObjectWatcher,
private val configProvider: () -> Config
) {
private val lifecycleCallbacks =
object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
override fun onActivityDestroyed(activity: Activity) {
if (configProvider().watchActivities) {
objectWatcher.watch(
activity, "${activity::class.java.name} received Activity#onDestroy() callback"
)
}
}
}
companion object {
fun install(
application: Application,
objectWatcher: ObjectWatcher,
configProvider: () -> Config
) {
val activityDestroyWatcher =
ActivityDestroyWatcher(objectWatcher, configProvider)
application.registerActivityLifecycleCallbacks(activityDestroyWatcher.lifecycleCallbacks)
}
}
}
初始化ActivityDestroyWatcher,并且向application统一注册生命周期回调,监听到Activity onDestroy回调,通过ObjectWatcher.watch来实现内存泄漏监控。
leakcanary/ObjectWatcher.kt
private val onObjectRetainedListeners = mutableSetOf()
private val watchedObjects = mutableMapOf()
private val queue = ReferenceQueue()
@Synchronized fun watch(
watchedObject: Any,
description: String
) {
if (!isEnabled()) {
return
}
//1.先把gc前ReferenceQueue中的引用清除
removeWeaklyReachableObjects()
val key = UUID.randomUUID()
.toString()
val watchUptimeMillis = clock.uptimeMillis()
//2.将activity引起包装为弱引用,并与ReferenceQueue建立关联
val reference = KeyedWeakReference(watchedObject, key, description, watchUptimeMillis, queue)
SharkLog.d {
"Watching " +
(if (watchedObject is Class<*>) watchedObject.toString() else "instance of ${watchedObject.javaClass.name}") +
(if (description.isNotEmpty()) " ($description)" else "") +
" with key $key"
}
watchedObjects[key] = reference
//3\. 5s之后出发检测(5s时间内gc完成)
checkRetainedExecutor.execute {
moveToRetained(key)
}
}
这里checkRetainedExecutor是外部传入的,有5s延迟执行。
leakcanary/internal/InternalAppWatcher.kt
private val checkRetainedExecutor = Executor {
mainHandler.postDelayed(it, AppWatcher.config.watchDurationMillis)//5s
}
接着往下看:
private fun moveToRetained(key: String) {
removeWeaklyReachableObjects()
val retainedRef = watchedObjects[key]
if (retainedRef != null) {
retainedRef.retainedUptimeMillis = clock.uptimeMillis()
onObjectRetainedListeners.forEach { it.onObjectRetained() }
}
}
5s延迟时间内,如果gc回收成功,retainedRef则为null,否则则触发内存泄漏处理,当然5s之内也不一定会触发gc,所以之后的内存泄漏处理会主动gc再判断一次。
leakcanary/internal/InternalLeakCanary.kt
override fun onObjectRetained() = scheduleRetainedObjectCheck()
fun scheduleRetainedObjectCheck() {
if (this::heapDumpTrigger.isInitialized) {
heapDumpTrigger.scheduleRetainedObjectCheck()
}
}
这里主要是确认下是否存在内存泄漏,逻辑不细看了,这里最终会执行dumpHeap:
2.3 dump确认
leakcanary/internal/HeapDumpTrigger.kt
private fun dumpHeap(
retainedReferenceCount: Int,
retry: Boolean
) {
saveResourceIdNamesToMemory()
val heapDumpUptimeMillis = SystemClock.uptimeMillis()
KeyedWeakReference.heapDumpUptimeMillis = heapDumpUptimeMillis
//1.dump heap
when (val heapDumpResult = heapDumper.dumpHeap()) {
...
is HeapDump -> {
…
//2.analysis heap
HeapAnalyzerService.runAnalysis(
context = application,
heapDumpFile = heapDumpResult.file,
heapDumpDurationMillis = heapDumpResult.durationMillis
)
}
}
}
这里主要就是dump hprof文件,然后起个服务来分析dump heap文件。
2.4 heap dump
leakcanary/internal/AndroidHeapDumper.kt
override fun dumpHeap(): DumpHeapResult {
val heapDumpFile = leakDirectoryProvider.newHeapDumpFile() ?: return NoHeapDump
val waitingForToast = FutureResult()
showToast(waitingForToast)
if (!waitingForToast.wait(5, SECONDS)) {
SharkLog.d { "Did not dump heap, too much time waiting for Toast." }
return NoHeapDump
}
val notificationManager =
context.getSystemService(Context.NOTIFICATION_SERVICE) as NotificationManager
if (Notifications.canShowNotification) {
val dumpingHeap = context.getString(R.string.leak_canary_notification_dumping)
val builder = Notification.Builder(context)
.setContentTitle(dumpingHeap)
val notification = Notifications.buildNotification(context, builder, LEAKCANARY_LOW)
notificationManager.notify(R.id.leak_canary_notification_dumping_heap, notification)
}
val toast = waitingForToast.get()
return try {
val durationMillis = measureDurationMillis {
Debug.dumpHprofData(heapDumpFile.absolutePath)
}
if (heapDumpFile.length() == 0L) {
SharkLog.d { "Dumped heap file is 0 byte length" }
NoHeapDump
} else {
HeapDump(file = heapDumpFile, durationMillis = durationMillis)
}
} catch (e: Exception) {
SharkLog.d(e) { "Could not dump heap" }
// Abort heap dump
NoHeapDump
} finally {
cancelToast(toast)
notificationManager.cancel(R.id.leak_canary_notification_dumping_heap)
}
}
这里很简单,dump过程先发出Notification,再通过Debug.dumpHprofData dump hprof文件。
cepheus:/data/data/com.example.leakcanary/files/leakcanary # ls -al
-rw------- 1 u0_a260 u0_a260 22944796 2020-12-07 11:30 2020-12-07_11-30-37_701.hprof
-rw------- 1 u0_a260 u0_a260 21910520 2020-12-07 14:52 2020-12-07_14-52-40_703.hprof
接下来看service的分析工作
2.5 hprof内存泄漏分析
leakcanary/internal/HeapAnalyzerService.kt
override fun onHandleIntentInForeground(intent: Intent?) {
if (intent == null || !intent.hasExtra(HEAPDUMP_FILE_EXTRA)) {
SharkLog.d { "HeapAnalyzerService received a null or empty intent, ignoring." }
return
}
// Since we're running in the main process we should be careful not to impact it.
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND)
val heapDumpFile = intent.getSerializableExtra(HEAPDUMP_FILE_EXTRA) as File
val heapDumpDurationMillis = intent.getLongExtra(HEAPDUMP_DURATION_MILLIS, -1)
val config = LeakCanary.config
val heapAnalysis = if (heapDumpFile.exists()) {
analyzeHeap(heapDumpFile, config)
} else {
missingFileFailure(heapDumpFile)
}
val fullHeapAnalysis = when (heapAnalysis) {
is HeapAnalysisSuccess -> heapAnalysis.copy(dumpDurationMillis = heapDumpDurationMillis)
is HeapAnalysisFailure -> heapAnalysis.copy(dumpDurationMillis = heapDumpDurationMillis)
}
onAnalysisProgress(REPORTING_HEAP_ANALYSIS)
config.onHeapAnalyzedListener.onHeapAnalyzed(fullHeapAnalysis)
}
首先这个服务是新起了进程来处理的
这里核心方法应该在analyzeHeap
private fun analyzeHeap(
heapDumpFile: File,
config: Config
): HeapAnalysis {
val heapAnalyzer = HeapAnalyzer(this)
val proguardMappingReader = try {
ProguardMappingReader(assets.open(PROGUARD_MAPPING_FILE_NAME))
} catch (e: IOException) {
null
}
return heapAnalyzer.analyze(
heapDumpFile = heapDumpFile,
leakingObjectFinder = config.leakingObjectFinder,
referenceMatchers = config.referenceMatchers,
computeRetainedHeapSize = config.computeRetainedHeapSize,
objectInspectors = config.objectInspectors,
metadataExtractor = config.metadataExtractor,
proguardMapping = proguardMappingReader?.readProguardMapping()
)
}
那么最终分析heap dumps找出泄漏点的工作是交给HeapAnalyzer来处理的
shark/HeapAnalyzer.kt
fun analyze(
heapDumpFile: File,
leakingObjectFinder: LeakingObjectFinder,
referenceMatchers: List = emptyList(),
computeRetainedHeapSize: Boolean = false,
objectInspectors: List = emptyList(),
metadataExtractor: MetadataExtractor = MetadataExtractor.NO_OP,
proguardMapping: ProguardMapping? = null
): HeapAnalysis {
val analysisStartNanoTime = System.nanoTime()
if (!heapDumpFile.exists()) {
val exception = IllegalArgumentException("File does not exist: $heapDumpFile")
return HeapAnalysisFailure(
heapDumpFile = heapDumpFile,
createdAtTimeMillis = System.currentTimeMillis(),
analysisDurationMillis = since(analysisStartNanoTime),
exception = HeapAnalysisException(exception)
)
}
return try {
listener.onAnalysisProgress(PARSING_HEAP_DUMP)
val sourceProvider = ConstantMemoryMetricsDualSourceProvider(FileSourceProvider(heapDumpFile))
sourceProvider.openHeapGraph(proguardMapping).use { graph ->
val helpers =
FindLeakInput(graph, referenceMatchers, computeRetainedHeapSize, objectInspectors)
val result = helpers.analyzeGraph(
metadataExtractor, leakingObjectFinder, heapDumpFile, analysisStartNanoTime
)
val lruCacheStats = (graph as HprofHeapGraph).lruCacheStats()
val randomAccessStats =
"RandomAccess[" +
"bytes=${sourceProvider.randomAccessByteReads}," +
"reads=${sourceProvider.randomAccessReadCount}," +
"travel=${sourceProvider.randomAccessByteTravel}," +
"range=${sourceProvider.byteTravelRange}," +
"size=${heapDumpFile.length()}" +
"]"
val stats = "$lruCacheStats $randomAccessStats"
result.copy(metadata = result.metadata + ("Stats" to stats))
}
} catch (exception: Throwable) {
HeapAnalysisFailure(
heapDumpFile = heapDumpFile,
createdAtTimeMillis = System.currentTimeMillis(),
analysisDurationMillis = since(analysisStartNanoTime),
exception = HeapAnalysisException(exception)
)
}
}
这里通过ConstantMemoryMetricsDualSourceProvider读取hprof文件,然后由FindLeakInput来进行分析。
private fun FindLeakInput.analyzeGraph(
metadataExtractor: MetadataExtractor,
leakingObjectFinder: LeakingObjectFinder,
heapDumpFile: File,
analysisStartNanoTime: Long
): HeapAnalysisSuccess {
listener.onAnalysisProgress(EXTRACTING_METADATA)
val metadata = metadataExtractor.extractMetadata(graph)
listener.onAnalysisProgress(FINDING_RETAINED_OBJECTS)
//1.从hprof中获取泄漏的对象id集合,这里主要是收集没有被回收的弱引用。
val leakingObjectIds = leakingObjectFinder.findLeakingObjectIds(graph)
//2.针对这些疑似泄漏的对象,计算到gcroot的最短引用路径,确定是否发生泄漏。
val (applicationLeaks, libraryLeaks) = findLeaks(leakingObjectIds)
return HeapAnalysisSuccess(
heapDumpFile = heapDumpFile,
createdAtTimeMillis = System.currentTimeMillis(),
analysisDurationMillis = since(analysisStartNanoTime),
metadata = metadata,
applicationLeaks = applicationLeaks,
libraryLeaks = libraryLeaks
)
}
这里leakingObjectFinder.findLeakingObjectIds实际上是KeyedWeakReferenceFinder,先通过它来获取泄漏对象的id集合。然后通过findLeaks针对这些疑似泄漏的对象,计算到gcroot的最短引用路径,确定是否发生泄漏。
最后构建LeakTrace,传递引用链,呈现分析结果。
val leakTrace = LeakTrace(
gcRootType = GcRootType.fromGcRoot(shortestPath.root.gcRoot),
referencePath = referencePath,
leakingObject = leakTraceObjects.last()
)
三、框架变迁
官方说明:
从1.6.3版本开始,有比较大的变化,简单总结起来:
java切到kotlin
heap分析库从haha转为Shark,haha本身也是square的开源库:https://github.com/square/haha,Shark没有作为三方开源库独立存在,而是leakCanaray的一个组件,因此新项目总体kotlin代码量增加了。
对内存泄漏工作流做了优化。
四、工作流总结
这里以Activity为例,简单对leakCanary核心类关系做下整理,leackCanaray还提供了FragmentDestroyWatcher,这里就不分析了,原理应该是一样的。
应用进程部分主要是对Activity/Fragment生命周期监控,watcher他们的引用。
内存泄漏预判检测机制:通过WeakReference +ReferenceQueue来判断对象是否被系统GC回收,Activity/Fragment引用被包装为WeakReference,同时传入ReferenceQueue。当被包装的Activity/Fragment对象生命周期结束,被gc检测到,则会将它添加到 ReferenceQueue 中,等ReferenceQueue处理。当 GC 过后对象一直不被加入 ReferenceQueue,它可能存在内存泄漏。
是否触发dump操作逻辑:这里会主动触发一次gc,再来看看是否有没被回收的弱引用对象。应用在前台,需要满足5个及以上泄漏对象才触发dump操作,后台满足1个就行,但是前后台均还会收一个nonpReason的制约,这个reason相当于一个统一的容错,保存判断leakCanary是否安装、配置是否正确、之前的noify通知发没发等等。
dump hprof文件通过 Debug.dumpHprofData(filePath)来实现,在data/data/package/files/leakcanary 目录下,文件大小10几M到几十M不等。这个过程应该是耗时的。
hprof文件分析工作交给HeapAnalyserService来处理,它本身在一个单独进程中,核心功能通过Shark来完成,内存泄漏主要工作:从hprof中获取泄漏的对象id集合,这里主要是收集没有被回收的弱引用,针对这些疑似泄漏的对象,计算到gcroot的最短引用路径,确认是否发生泄漏。如果确认有内存泄漏,则会生成统计报表输出。
参考:leakcanary官方说明文档