- 线性代数基础
wq_151
mathematic线性代数
Base对于矩阵A,对齐做SVD分解,即UΣV=svd(A)U\SigmaV=svd(A)UΣV=svd(A).其中U为AATAA^TAAT的特征向量,V为ATAA^TAATA的特征向量。Σ\SigmaΣ的对角元素为降序排序的特征值。显然,U、V矩阵中的列向量相互正交,所以也可以视V为svd分解给出了A的列向量空间的正交基,其中最大奇异值(或特征值)对应的特征向量捕捉了数据变化的最大方向。求满足A
- 高等代数精解【9】
叶绿先锋
基础数学与应用数学线性代数矩阵
文章目录向量空间与矩阵矩阵的行列式矩阵A的秩保持不变方阵的行列式线性无关的条件1.线性组合为零向量的唯一性2.矩阵的秩3.几何解释(对于二维和三维空间)4.行列式(对于方阵)总结矩阵的非零子式基础重要性例子注意事项非奇异矩阵(也称为可逆矩阵或满秩矩阵)定义性质例子结论逆矩阵的计算高斯-约旦消元法Julia代码使用伴随矩阵和行列式的倒数来计算逆矩阵参考文献向量空间与矩阵矩阵的行列式矩阵A的秩保持不变
- 仿射变换与仿射函数
海棠未语
算法机器学习线性代数人工智能笔记
目录一、仿射变换二、仿射变换应用及示例三、仿射函数四、仿射函数应用及示例五、二者区别与联系一、仿射变换仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间,一种从Rn到Rm\mathbb{R}^n\到\mathbb{R}^mRn到Rm的映射。如下:一个对向量平移,与旋转放大缩小A的仿射映射为y⃗=AX⃗+b⃗\vec{y}=A\vec{X}+\ve
- 线性基整理
益达爱喝芬达
组合数学算法
概述线性基,是线性代数中的概念,在信息学竞赛中,前缀线性基是线性基的扩展,他们主要用于处理有关异或和的极值问题。一组线性无关的向量即可作为一组基底,张起一个线性的向量空间,这个基底即称为线性基,利用线性基的基底进行线性运算,可表示向量空间内的所有向量,换句话说,所有向量都可以拆成基底的线性组合。根据异或的原理,将一个数字拆成他的二进制形式,将二进制形式用向量来表示,由于一组线性无关的向量可以张起一
- 第六课——向量空间及子空间
想专注学习的人
接着第五讲的内容在子空间中提到了P和L,取他们的并PUL=P和L中的所有向量,请问这个并集是不是子空间?答案:不是那交集呢?若是任意两个子空间呢?答案:是假设取S、T的交集的两个向量v,w。显然v+w是属于S,同理对于T中任意两向量,相加仍然属于T乘法条件也同然成立也就是说,取任意两子空间的交集,结果仍是子空间,只是比原子空间小列空间举个例子A的列空间是R4的子空间此处三个向量是构不成向量空间的,
- 使用Python实现文本向量化(一)——腾讯词向量
Shy960418
Python使用技巧深度学习python人工智能
Docs向量化(Embedding)Embedding也是文本语义含义的信息密集表示,每个嵌入都是一个浮点数向量,使得向量空间中两个嵌入之间的距离与原始格式中两个输入之间的语义相似性相关联。例如,如果两个文本相似,则它们的向量表示也应该相似,这一组向量空间内的数组表示描述了文本之间的细微特征差异。简单来说,Embedding帮助计算机来理解如人类信息所代表的“含义”,Embedding可以用来获取
- 深度学习如何入门?
科学的N次方
深度学习
入门深度学习需要系统性的学习和实践经验积累,以下是一份详细的入门指南,包含了关键的学习步骤和资源:预备知识:•编程基础:熟悉Python编程语言,它是深度学习领域最常用的编程语言。确保掌握变量、条件语句、循环、函数等基本概念,并学习如何使用Python处理数据和文件操作。•数学基础:理解线性代数(矩阵运算、向量空间等)、微积分(导数、梯度求解等)、概率论与统计学(期望、方差、概率分布、最大似然估计
- 线性代数笔记5--矩阵转置置换与向量空间
_不会dp不改名_
线性代数线性代数笔记矩阵
1.置换矩阵考虑主元需要交换的情况,即需要行变换的情况。式子变为PA=LUPA=LUPA=LU。考虑3×33\times33×3的所有置换矩阵两行互换[010100001][001010100][100001010]\begin{bmatrix}0&1&0\\1&0&0\\0&0&1\\\end{bmatrix}\begin{bmatrix}0&0&1\\0&1&0\\1&0&0\\\end{bm
- c# 线性代数 克·施密特(Gram Schmidt)
csdn_aspnet
C#线性代数算法
Gram-Schmidt方法是一种用于将线性无关的向量集合转化为一组正交(垂直)的向量集合的数学技术。这个方法是在线性代数中常用的一种技术,用于处理向量空间中的正交化和标准化操作。Gram-Schmidt方法的主要思想是,通过一系列的投影和减法操作,将原始向量集合转化为一个正交化的向量集合。在C#中,Gram-Schmidt方法可以通过以下步骤实现:对于给定的向量集合,首先将每个向量进行标准化,即
- 线性代数第9版英文pdf_线性代数(英文版·第9版)
weixin_39726044
线性代数第9版英文pdf
《线性代数(英文版·第9版)》结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了MATLAB练习题和测试题。StevenJ.Leon1971年于密歇根州立大学数学系获得博士学位,现为马萨诸塞大学达特茅斯分校数学系首席教授,
- 【深度学习】S2 数学基础 P2 线性代数(下)
脚踏实地的大梦想家
#深度学习深度学习线性代数人工智能
目录范数L1范数L2范数本节博文是线性代数第二部分,主要内容为L1L1L1范数与L2L2L2范数;有关线性代数基础知识,请访问:【深度学习】S2数学基础P1线性代数(上)范数在线性代数中,范数是一个数学概念,用于量化向量或矩阵的大小或长度。范数是一个满足一系列性质的函数,这些性质包括正定性、齐次性和三角不等式。范数定义了向量空间的内积(或点积)的概念,并且与向量空间的度量空间相关联。L1范数L2范
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- 使用Word Embedding+Keras进行自然语言处理NLP
取名真难.
机器学习keraspython深度学习神经网络人工智能自然语言处理
目录介绍:one-hot:pad_sequences:建模:介绍:WordEmbedding是一种将单词表示为低维稠密向量的技术。它通过学习单词在文本中的上下文关系,将其映射到一个连续的向量空间中。在这个向量空间中,相似的单词在空间中的距离也比较接近,具有相似含义的单词在空间中的方向也比较一致。WordEmbedding可以通过各种方法来实现,包括基于统计的方法(如Word2Vec和GloVe)和
- 计算机视觉所需要的数学基础
superdont
计算机视觉计算机视觉人工智能
计算机视觉领域中使用的数学知识广泛而深入,以下是一些关键知识点及其在计算机视觉中的应用:线性代数:-矩阵运算:用于图像的表示和处理,如图像旋转、缩放、裁剪等。-向量空间:用于描述图像中的点、方向和形状。-特征值和特征向量:用于图像的特征提取和降维。微积分:-导数:用于图像边缘检测,通过计算图像亮度的变化率来识别边缘。-积分:用于图像的面积和体积计算,以及光流法中的运动估计。概率论与统计学:-概率分
- Arxiv网络科学论文摘要20篇(2019-10-15)
ComplexLY
从异常的多尺度舰队行为预测非法海上活动;利用广义流行病模型建模自激发过程信息级联;高校的可扩展性、效率和复杂性:评估高等教育系统的新视角;优化目标节点集用于有向复杂网络的控制能量;管理科学手稿的同行评审效率——编辑观点;原始分辨率货币流动网络;解耦随机的和真实世界的图的可解释的生成性参数;使用向量空间模型分析在线社会网络的用户活动;同行评审期刊提交并接受的论文分布的季节性熵、多样性和不平等度量;面
- 【人工智能】文本嵌入:向量存储与数据查询的智慧交织(12)
魔道不误砍柴功
AI大模型人工智能
在当今信息激增的时代,将中文存储到向量数据库(如Redis等)并实现向量检索,正成为解决日常应用中文信息处理难题的关键利器。这项技术不仅赋予计算机对中文语义的理解能力,更让我们能够以更智能、高效的方式处理和检索中文文本。在接下来的内容中,我们将揭晓这项技术的神秘面纱,探究中文向量化及检索的魅力所在。跟随我们一同踏上这场数字化探险,发现中文在向量空间中的无限可能。文档拆分因为中文是及其复杂的,并且语
- NLP中的嵌入和距离度量
deephub
人工智能深度学习自然语言处理词嵌入
本文将深入研究嵌入、矢量数据库和各种距离度量的概念,并提供示例和演示代码。NLP中的嵌入嵌入是连续向量空间中对象、单词或实体的数值表示。在NLP中,词嵌入捕获词之间的语义关系,使算法能够更好地理解文本的上下文和含义。让我们试着用一个例子和一些可视化的方法来理解它:假设有6个句子,想要创建嵌入fromsentence_transformersimportSentenceTransformer#Sam
- NLP自然语言处理实战(三):词频背后的语义--5.距离和相似度&反馈及改进
Nobitaxi
NLP自然语言处理实战学习自然语言处理机器学习人工智能
目录1.距离和相似度2.反馈及改进线性判别分析1.距离和相似度我们可以使用相似度评分(或距离),根据两篇文档的表达向量间的相似度(或距离)来判断文档间有多相似。LSA能够保持较大的距离,但它并不能总保持较小的距离(文档之间关系的精细结构)。LSA底层的SVD算法的重点是使新主题向量空间中所有文档之间的方差最大化。特征向量(词向量、主题向量、文档上下文向量等)之间的距离驱动着NLP流水线或任何机器学
- NLP_神经概率语言模型(NPLM)
you_are_my_sunshine*
NLP自然语言处理语言模型人工智能
文章目录NPLM的起源NPLM的实现1.构建实验语料库2.生成NPLM训练数据3.定义NPLM4.实例化NPLM5.训练NPLM6.用NPLM预测新词NPLM小结NPLM的起源在NPLM之前,传统的语言模型主要依赖于最基本的N-Gram技术,通过统计词汇的共现频率来计算词汇组合的概率。然而,这种方法在处理稀疏数据和长距离依剌时遇到了困难。NPLM是一种将词汇映射到连续向量空间的方法,其核心思想是利
- 人工智能|深度学习——使用多层级注意力机制和keras实现问题分类
博士僧小星
人工智能#深度学习【算法】人工智能深度学习keras多层注意力问题分类
代码下载使用多层级注意力机制和keras实现问题分类资源-CSDN文库1准备工作1.1什么是词向量?”词向量”(词嵌入)是将一类将词的语义映射到向量空间中去的自然语言处理技术。即将一个词用特定的向量来表示,向量之间的距离(例如,任意两个向量之间的L2范式距离或更常用的余弦距离)一定程度上表征了的词之间的语义关系。由这些向量形成的几何空间被称为一个嵌入空间。传统的独热表示(one-hotrepres
- NLP_词的向量表示Word2Vec 和 Embedding
you_are_my_sunshine*
NLP自然语言处理word2vecembedding
文章目录词向量Word2Vec:CBOW模型和Skip-Gram模型通过nn.Embedding来实现词嵌入Word2Vec小结词向量下面这张图就形象地呈现了词向量的内涵:把词转化为向量,从而捕捉词与词之间的语义和句法关系,使得具有相似含义或相关性的词语在向量空间中距离较近。我们把语料库中的词和某些上下文信息,都“嵌入”了向量表示中。将词映射到向量空间时,会将这个词和它周围的一些词语一起学习,这就
- word2vec
e237262360d2
将词表征为实数值向量的高效工具,采用的模型有CBOW(Continuesbag-of-words连续词袋模型)和Skip-Gram两种。word2vec通过训练,可以把对文本内容的处理简化为K维向量空间中的向量运算词向量:把一个词表示成一个向量One-hotRepresentation维度是词典的大小DistributedRepresentation维度以50,100比较常见CBOW:用上下文预测
- PyTorch中的nn.Embedding的使用、参数及案例
神奇的布欧
pytorchembedding人工智能深度学习nlp自然语言处理词嵌入
PyTorch中的nn.Embedding的使用Embedding层在神经网络中主要起到降维或升维的作用。具体来说,它通过将输入(通常是离散的、不连续的数据,如单词或类别)映射到连续的向量空间,从而实现数据的降维或升维。在降维方面,Embedding层可以用来降低数据的维度,减少计算和存储开销。例如,在自然语言处理任务中,词嵌入可以将每个单词表示为一个实数向量,从而将高维的词汇空间映射到一个低维的
- 使用python构建向量空间_基于python构建空间权重矩阵
weixin_39756445
使用python构建向量空间
目录目录基础距离权重邻接权重示例Pysal是一个面向地理空间数据科学的开源跨平台库,重点是用python编写的地理空间矢量数据。它支持空间分析高级应用程序的开发,例如空间簇、热点和异常点的检测从空间数据构建图形地理嵌入网络的空间回归与统计建模空间计量经济学探索性时空数据分析最近写文章要用空间权重矩阵,可以用Arcgis和Geoda处理效率略低,于是想到用Pysal计算空间权重矩阵,并转换成Stat
- 深度学习如何入门?
dami_king
深度学习人工智能
入门深度学习需要系统性的学习路径和实践经验。以下是一些建议的步骤来快速入门并逐步深入理解深度学习:1.基础知识准备数学基础:理解和掌握线性代数(矩阵运算、向量空间)、微积分(梯度、导数)、概率论与统计学(概率分布、最大似然估计、贝叶斯推断)是至关重要的。编程基础:至少掌握一种编程语言,如Python,并熟悉其科学计算库如NumPy、Pandas以及可视化库如Matplotlib。2.机器学习预备知
- 异质信息网络表征学习综述
白色的生活
论文阅读笔记异质息网络
摘要信息网络表征学习的目的:利用网络的拓扑结构、节点内容等信息将节点嵌入到低维的向量空间中,同时保留原始网络固有的结构特征和内容特征,从而使节点的分类、聚类、链路预测等网络分析任务能够基于低维、稠密的向量完成。【一种降维技术】引言信息网络表征学习,也被称为表示学习或嵌入学习。在嵌入过程中,高出(入)度节点的结构和内容信息可用于辅助低出(入)度节点的结构或语义特征的表示,从而有效缓解网络数据稀疏性问
- 大模型微调LoRA训练与原理
谦虚且进步
人工智能学习Python数据分析机器学习算法人工智能
1.什么是LoRA?LoRA的全称是LOW-RANK-ADAPTATION。是一种实现迁移学习的技术手段。2.矩阵的秩?秩是一个向量空间的基向量的个数。例如:二维平面坐标系存在两个基向量,平面上任意的一个向量都可以使用这两个基向量进行线性表示,则秩为2。三维空间中则有3个基向量。3维空间存在很多对的基向量,而正交的基向量才是最简单的。秩是矩阵特有的属性。3.Transforerm中的矩阵有哪些?很
- 泛函分析笔记(八)Banach 空间中的lp空间和Lebesgue空间 (勒贝格空间)
豆沙粽子好吃嘛!
泛函分析
文章目录1.Banach空间的基本性质2.Banach空间的例子2.1.空间lp,1≤p≤∞l^p,1\lep\le\inftylp,1≤p≤∞2.2.Lebesgue空间Lp(Ω),1≤p≤∞L^p(\Omega),1\lep\le\inftyLp(Ω),1≤p≤∞1.Banach空间的基本性质赋范向量空间(X,∣∣⋅∣∣)(X,||\cdot||)(X,∣∣⋅∣∣)称为Banach空间,是指距
- 文本相似度计算
Logan_addoil
python大数据学习之旅python
相似度度量:计算个体间相似度相似度值越小,距离越大,相似度越大,距离越小余弦相似度:一个向量空间中两个向量夹角的余弦值作为衡量两个个体之间差异的大小余弦值接近1,夹角趋于0,表明两个向量越相似例如:文本相似度计算1.找出两篇文章的关键词2.每篇文章各取出若干关键词,合并成一个集合,计算每篇文章对于这个词的词频3.生成两篇文章各自的词频向量4.计算两个向量的余弦相似度,值越大就表示越相似import
- 《自然语言处理的前沿探索:深度学习与大数据引领技术风潮》
清水白石008
自然语言处理深度学习大数据
《自然语言处理的前沿探索:深度学习与大数据引领技术风潮》一、技术进步:自然语言处理的引擎在自然语言处理(NLP)领域,关键技术的不断进步推动了整个行业的发展。词嵌入、循环神经网络(RNN)、Transformer、以及注意力机制等技术成为自然语言处理的引擎,驱动着计算机更好地理解和生成人类语言。词嵌入:语义信息的立体呈现词嵌入技术通过将词汇映射到高维向量空间,使得计算机能够捕捉词语之间的语义关系。
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l