- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- 4、理解线性代数的核心概念与应用
rice5
线性代数第五版深度解析线性代数向量空间子空间
理解线性代数的核心概念与应用1引言线性代数是现代数学的重要分支之一,广泛应用于科学、工程、计算机科学等领域。理解线性代数的基本概念和原理不仅有助于学术研究,还能够提升解决实际问题的能力。本文将深入探讨线性代数中的核心概念,帮助读者建立坚实的理论基础,并掌握实际应用技巧。2向量空间向量空间是线性代数的基础概念之一。一个向量空间(V)是指一个集合,其元素称为向量,并且这些向量之间可以进行加法运算和标量
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- AI大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够!
AI大模型-大飞
人工智能学习语言模型大模型大模型学习LLMAI大模型
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- AI学习指南高数篇-泛函分析
俞兆鹏
AI学习指南ai
AI学习指南高数篇-泛函分析概述在数学领域中,泛函分析是研究无限维向量空间及其内涵结构的分支学科。泛函分析通过研究向量空间内的连续线性泛函,解决了无限维空间上函数序列的极限性质以及函数空间的拓扑性质等问题。泛函分析在AI中的使用场景泛函分析在人工智能领域中发挥着重要作用,特别是在机器学习和深度学习领域。通过泛函分析的方法,AI系统可以更好地处理高维数据,从而更准确地进行模式识别、数据建模和预测分析
- 词编码模型有哪些
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython人工智能机器学习数据挖掘分类算法
词编码模型有哪些词编码模型在高维向量空间的关系解析与实例说明如Word2Vec、BERT、Qwen等一、高维向量空间的基础概念词编码模型(如Word2Vec、BERT、Qwen等)的核心是将自然语言符号映射为稠密的高维向量,使语义相近的词汇在向量空间中位置接近。以Qwen模型为例,其15万字符的词表规模(通常基于字节对编码BPE)本质是在高维空间中为每个词分配唯一的坐标点,而向量之间的几何关系(如
- 线性代数导引:附录:行列式几何解释
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍线性代数是数学中的一个重要分支,它研究的是向量空间和线性变换。在计算机科学中,线性代数被广泛应用于图形学、机器学习、数据挖掘等领域。行列式是线性代数中的一个重要概念,它可以用来求解线性方程组的解、计算矩阵的逆、判断矩阵是否可逆等问题。本文将介绍行列式的几何解释,帮助读者更好地理解行列式的概念和应用。2.核心概念与联系2.1向量的叉积向量的叉积是指两个向量的乘积得到的另一个向量。设向量$
- 【11408学习记录】考研数学核心突破:矩阵本质、系统信息与向量空间基
蒙奇D索大
保姆级教学11408学习考研矩阵线性代数改行学it笔记
矩阵数学线性代数矩阵的本质n维向量空间中的一个基可以表达所有信息矩阵信息表达中的关系英语每日一句词汇第一步:找谓语第二步:断句第三步:简化主句1主句2定语从句数学线性代数矩阵的本质矩阵——表达系统信息。何为系统?这里我们以行列式为例进行说明。在行列式中,我们学过由行列式的性质3拓展得到的倍乘性质:性质3:若行列式中某行(列)元素有公因式k(k≠0)k(k\neq0)k(k=0),则kkk可提到行
- 性能优化中,多面体模型基本原理
好好学习啊天天向上
机器学习人工智能
1)多面体编译技术是一种基于多面体模型的程序分析和优化技术,它将程序中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对象,通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优化。其中,迭代空间表示程序中循环语句的迭代次数所构成的空间,通常被表示为一个多维的整数向量空间。迭代空间中的每个向量表示一个循环的一次迭代,即循环变量在该次迭代中的取值。因此,迭代空间中的每个向量
- 线性代数导引:欧几里得空间
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍线性代数作为计算机科学的基石之一,对人工智能、数据科学、计算机图形学等多个领域都有着深远的影响。本篇博客文章将从欧几里得空间的定义入手,逐步深入讲解线性代数中的核心概念和原理,并结合实际应用场景,展示其强大的计算能力和广泛的适用性。1.1线性代数与欧几里得空间线性代数主要研究线性方程组、向量空间、矩阵等数学工具,以及它们在解决实际问题中的应用。其中,欧几里得空间是线性代数中最为基础和重
- 线性代数小述(二之前)
天宫风子
线性代数
线性代数小述(二之前)byAmamiya_Fuko斜阳洒落,仍是今朝踉跄西去,不见东还前言线性代数是什么?它什么也不是,也可以是什么,它的意义是随意的、偶然的,也许它是期末考试的科目,又或者是解决问题的工具,但现在它是我们欲望的名,是我的自我,是神圣的本体,总之,是有趣的东西,希望你享受其中。目录1.向量与向量空间2.线性组合与线性方程3.线性变换向量与向量空间向量是向量空间内的元素,对于线性代数
- 【深度学习新浪潮】如何入门三维重建?
小米玄戒Andrew
深度学习新浪潮图像处理基石深度学习人工智能图像处理计算机视觉python视觉几何opencv
入门三维重建算法技术需要结合数学基础、计算机视觉理论、编程实践和项目经验,以下是系统的学习路径和建议:一、基础知识储备1.数学基础线性代数:矩阵运算、向量空间、特征分解(用于相机矩阵、变换矩阵推导)。几何基础:三维几何(点、线、面的表示)、射影几何(单应矩阵、本质矩阵、基础矩阵)、李群与李代数(SLAM中的位姿优化)。概率与统计:贝叶斯估计、概率图模型(SLAM中的状态估计)、随机过程(滤波算法如
- 从线性方程组角度理解公式 s=n−r(3E−A)
Smile灬凉城666
线性代数算法机器学习
从线性方程组角度理解公式s=n−r(3E−A)这个公式本质上是齐次线性方程组解空间维度的直接体现。下面通过三个关键步骤解释其在线性方程组中的含义:1.公式对应的线性方程组考虑矩阵方程:(3E−A)x=0其中:x是n维未知向量3E−A是系数矩阵(n×n阶)0是零向量几何意义:该方程组描述所有被线性变换A缩放3倍的向量(即满足Ax=3x的向量)。2.解空间的维度=几何重数s方程组的解集构成一个向量空间
- 我2025上岸大模型就靠它了,冲击大厂大模型岗位!大模型学习路线(2025最新)从零基础入门到精通_大模型学习路线
大模型老炮
学习人工智能程序员Agent大模型教学知识库大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。\1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcad
- 大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够
AGI大模型学习
学习人工智能大模型大模型学习AI程序员大模型教程
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- 神仙级大模型教程分享,不用感谢,请叫我活雷锋!大模型 学习路线非常详细_大模型学习路线(2025最新)
程序员辣条
学习人工智能大模型产品经理智能体大模型教程AI大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- Sentence Transformers 教程!
小森( ﹡ˆoˆ﹡ )
人工智能transformernlplangchaingpt-3python
SentenceTransformers专注于句子和文本嵌入,支持超过100种语言。利用深度学习技术,特别是Transformer架构的优势,将文本转换为高维向量空间中的点,使得相似的文本在几何意义上更接近。语义搜索:构建高效的语义搜索系统,找到最相关的查询结果。信息检索与重排:在大规模文档集合中查找相关文档并重新排序。聚类分析:将文本自动分组,发现隐藏的主题或模式。摘要挖掘:识别和提取文本的主要
- Prompt Tuning与自然语言微调对比解析
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonprompt人工智能机器学习学习分类
PromptTuning与输入提示词自然语言微调的区别和联系一、核心定义与区别维度PromptTuning(提示微调)输入提示词自然语言微调本质优化连续向量空间中的提示嵌入(不可直接阅读)优化离散自然语言文本(人类可理解)操作对象模型输入嵌入层的连续向量(如WordEmbedding)自然语言文本字符串(如“请判断:{text}”)训练方式端到端梯度下降,更新提示向量的数值离散搜索(如波束搜索、强
- 向量数据库weaviate
发呆的比目鱼
预训练模型数据库
向量数据库weaviate1.简介Weaviate是一种开源的类型向量搜索引擎数据库。Weaviate允许您以类属性的方式存储JSON文档,同时将机器学习向量附加到这些文档上,以在向量空间中表示它们。Weaviate可以独立使用(即带上您的向量),也可以与各种模块一起使用,这些模块可以为您进行向量化并扩展核心功能。Weaviate具有GraphQL-API,以便轻松访问您的数据。Weaviate详
- (泛函分析)巴拿赫空间Banach Space和希尔伯特空间Hilbert Space
音程
数学泛函分析
1.泛函分析中的“空间”定义:泛函分析中的“空间”通常指具有某种结构的向量空间,例如赋范空间、内积空间、拓扑空间等。这些空间通过附加结构(如范数、内积、拓扑)来研究函数或序列的收敛性、连续性等性质。关键结构:向量空间:支持加法和标量乘法。附加结构:例如范数(衡量元素“大小”)、内积(衡量元素间的“角度”)、拓扑(定义收敛性)等。2.巴拿赫空间(BanachSpace)定义:巴拿赫空间是完备的赋范向
- GENSIM 使用笔记1 --- 语料和向量空间
学术状态抽奖器
NLP技术手札学习手册gensim中文向量序列化教程
GENSIM使用笔记1—语料和向量空间GENSIM使用笔记2—主题模型和相似性查询1本篇说明本篇博客来源于GENSIM官方向导文档的第一章,主要供自己后续的翻阅,并通过分享带给诸位网友一个小小的参照。从字符串到向量在这一小节当中,将会讲述如何通过gensim,将一段文本以向量的形式表示。首先我们看一下我们的基本文档形式:documents=['拍照反光一直是摄影爱好者较为苦恼的问题','尤其是手机
- 自然语言处理核心技术:词向量(Word Embedding)解析
扉间798
python
自然语言处理核心技术:词向量(WordEmbedding)全面解析在自然语言处理(NLP)领域,如何让计算机理解人类语言的语义一直是核心挑战。词向量(WordVector),又称词嵌入(WordEmbedding),通过将词语映射到连续的实数向量空间,为机器理解语言开辟了新路径。本文将从原理、发展历程、主流模型及应用场景等方面,深入解析这一关键技术。一、词向量:让语言可计算的“桥梁”词向量的核心目
- 大模型——多模态检索的RAG系统架构设计
追逐☞
大模型RAG
文章目录1.系统架构设计核心组件2.跨模态向量空间对齐方案方法一:预训练对齐模型(如CLIP)方法二:跨模态投影网络方法三:联合微调3.混合检索策略4.关键问题解决Q:如何解决模态间向量尺度不一致?Q:如何优化多模态索引效率?5.扩展能力总结多模态检索的RAG系统架构设计(文本+图像混合检索)1.系统架构设计文本查询图像查询用户输入多模态编码器文本Embedding模型图像Embedding模型联
- 使用 PyTorch 实现 CBOW 词向量模型
进来有惊喜
python
在自然语言处理(NLP)领域,词向量表示是一项基础而关键的技术。通过将文本中的词语映射到低维向量空间,我们可以让计算机更好地理解和处理人类语言。今天,我们将深入探讨并实现CBOW(ContinuousBag-of-Words)模型,这是一种经典的词向量训练方法。什么是CBOW模型?CBOW模型是一种基于上下文预测目标词的神经网络模型,由Mikolov等人在2013年提出。与Skip-gram模型相
- 基础数学:线性代数与概率论在AI中的应用
赵青临的辉
深入人工智能:从基础到实战线性代数概率论人工智能
在人工智能(AI)的世界里,数学是其核心语言,尤其是线性代数和概率论。这两门基础数学学科构成了AI算法的基础,理解它们对于深入掌握机器学习和深度学习至关重要。本文将重点探讨线性代数与概率论在AI中的应用,特别是它们如何帮助解决实际问题。线性代数在AI中的应用线性代数是研究向量、矩阵及其运算的数学分支,在机器学习和深度学习中有着广泛的应用。下面是一些主要的应用领域:1.向量空间与数据表示在机器学习中
- 线性代数 【22】 抽象的向量空间
Franklin
数学线性代数
前言:围绕线性代数的本质,已经写了好多篇了,这里也许越来越走向本质。本质就是你根本不需要讨论向量空间,只需要考虑之前定义的向量的基本规则,然后,推而言之,推广到任何类似的场景下的应用,从而成为数学和其他任何应用的链接桥梁。1向量和矢量的本质:在前面几节,以及向量的定义,我们都理解向量为一个带方向箭头和坐标的东西。然而,他也可以表述为一队数字,这个数字的排列就是方向。所以,可以理解他是一队数字。1.
- 2025-05-12 Embedding介绍
大油头儿
AIembeddingai
EmbeddingEmbedding是现代人工智能和机器学习中极其重要地技术,尤其在自然语言处理、计算机视觉和推荐系统等领域发挥着核心作用。定义Embedding是一种将离散数据(词语、句子、图像、用户ID等)映射到连续地低维稠密向量空间技术。每个离散对象被表示为一个实数向量,这个向量捕捉了对象的语义或特征信息本质Embedding是数字化表示的升级版,不仅是数字化,更是通过学习让向量空间中的距离
- 智能工厂的设计软件 表征论的三向度空间(意向相关项)
一水鉴天
智能制造软件智能人工语言机器学习人工智能开发语言中间件
本文要点在最高级别上的数学诠释学观点中表征论的三向度空间(三个意向相关relative项引用)“表征模式张量空间--一般量化词@【词典词】:产品生产线程thread中最后的“封装”的生产任务--以主取式存在分类学划分的“Package”中唯一机器模型的主取式(析取/合取)双料“分类学”“表征内容向量空间--索引词#【索引词】:”项目工程过程process中最初的“启动”的工作任务--以矛盾式逻辑置
- 深入浅出AIGC可控生成:从Latent Space操控到输出优化
AI原生应用开发
AIGCai
深入浅出AIGC可控生成:从LatentSpace操控到输出优化关键词:AIGC可控生成、潜空间(LatentSpace)操控、条件生成模型、输出优化技术、扩散模型、向量空间语义对齐、多模态控制摘要:本文系统解析AIGC(人工智能生成内容)中"可控生成"的核心技术链路,从潜空间(LatentSpace)的语义建模到输出结果的精细化优化,覆盖从理论原理到工程实践的全流程。通过深入剖析潜空间的连续性、
- TensorFlow深度学习实战(13)——神经嵌入详解
盼小辉丶
深度学习tensorflow自然语言处理
TensorFlow深度学习实战(13)——神经嵌入详解0.前言1.神经嵌入简介1.1Item2Vec1.2node2vec2.数据集与模型分析3.实现神经嵌入小结系列链接0.前言神经嵌入(NeuralEmbedding)是一种通过神经网络模型将离散的符号(如词语、字符、图像等)映射到低维连续向量空间中的技术。它属于更广泛的嵌入(Embedding)技术范畴,在深度学习中起着关键作用。神经嵌入通过
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l