- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- 大模型量化
需要重新演唱
大模型量化
大模型量化是一种优化技术,旨在减少深度学习模型的内存占用和提高推理速度,同时尽量保持模型的精度。量化通过将模型中的浮点数权重和激活值转换为较低精度的表示形式来实现这一目标。以下是关于大模型量化的详细知识:目录1.量化基础1.1量化定义1.2量化优势1.3量化挑战2.量化方法2.1量化类型2.2量化粒度2.3量化算法3.量化实践3.1量化流程3.2量化工具4.量化案例4.1BERT量化4.2GPT-
- 【面试宝典】【大模型入门】【模型微调】
曾小文
人工智能深度学习机器学习
面试热点科普:监督微调vs无监督微调,有啥不一样?在大模型时代(比如BERT、GPT)里,我们经常听到“预训练+微调”的范式。但你可能会疑惑——监督微调、无监督微调,到底有啥区别?用的场景一样吗?今天这篇,带你5分钟搞懂这对“孪生兄弟”的异同✅1.术语定义名称定义说明预训练(Pretraining)在大规模通用数据上训练模型,学习“通用知识”,比如语言规律、语义表示。微调(Fine-tuning)
- 中文工单分类模型选择
SugarPPig
人工智能分类人工智能数据挖掘
采用基于预训练模型的微调(Fine-tuning)方案来做中文工单分类,这是非常明智的选择,因为预训练模型已经在大量中文语料上学习了丰富的语言知识,能大幅提升分类效果。在HuggingFace上,针对中文文本分类,我为你推荐以下最合适的模型:最推荐的模型:BERT-base-chinese模型名称(HuggingFaceID):google-bert/bert-base-chinese为什么推荐它
- ⼤模型(LLMs)基础⾯
cv2016_DL
LLM大模型计算机视觉人工智能llama
1.⽬前主流的开源模型体系有哪些?⽬前主流的开源LLM(语⾔模型)模型体系包括以下⼏个:1.GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的⼀系列基于Transformer架构的语⾔模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在⼤规模⽆标签⽂本上进⾏预训练,然后在特定任务上进⾏微调,具有很强的⽣成能⼒和语⾔理解能⼒。2.BERT(B
- 使用Hugging Face的Sentence Transformers进行文本嵌入
2501_92325368
语言模型langchain
概述HuggingFace的SentenceTransformers是一种用于生成文本和图像嵌入的Python框架,提供了最新的技术。这个框架可以通过HuggingFaceEmbeddings类来使用嵌入模型。尽管它功能强大,但在本地运行可能会受到操作系统和其他因素的影响,因此推荐给有经验的用户使用。核心原理解析SentenceTransformers基于BERT等深度学习模型,通过转化输入文本为
- 波动方程延拓法求解
weixin_30777913
算法
题目问题8.使用延拓法结合达’Alembert公式解决以下十二个问题中的每一个。第一个问题:{utt−c2uxx=0,x>0,u∣t=0=0,x>0,ut∣t=0=cos(x),x>0,u∣x=0=0,t>0;\begin{cases}u_{tt}-c^2u_{xx}=0,&x>0,\\u|_{t=0}=0,&x>0,\\u_t|_{t=0}=\cos(x),&x>0,\\u|_{x=0}=0,
- WPF textbox头尾添加文本
一个输入数据个数的文本框publicclassNumberToStringConverter:IValueConverter{publicobjectConvert(objectvalue,TypetargetType,objectparameter,CultureInfoculture){if(value==null||string.IsNullOrEmpty(value.ToString())
- 预训练语言模型
lynnzon
语言模型人工智能自然语言处理
1.1Encoder-onlyPLMEncoder-only架构是Transformer的重要分支,专注于自然语言理解(NLU)任务,核心代表是BERT及其优化模型(RoBERTa、ALBERT)。其特点是:仅使用Encoder层:堆叠多层TransformerEncoder,捕捉文本双向语义。预训练任务:通过掩码语言模型(MLM)学习上下文依赖。应用场景:文本分类、实体识别、语义匹配等NLU任务
- 大模型学习 (Datawhale_Happy-LLM)笔记4: 预训练语言模型
lxltom
学习笔记语言模型人工智能bertgpt
大模型学习(Datawhale_Happy-LLM)笔记4:预训练语言模型一、概述本章按Encoder-Only、Encoder-Decoder、Decoder-Only的顺序来依次介绍Transformer时代的各个主流预训练模型,分别介绍三种核⼼的模型架构、每种主流模型选择的预训练任务及其独特优势,这也是目前所有主流LLM的模型基础。二、Encoder-onlyPLM代表:BERT及其优化版本
- OSError: We couldn‘t connect to ‘https://huggingface.co‘ to load this file, couldn‘t find it in the
是纯一呀
NLPAIDeepLearningdeeplearningNLP
OSError:Wecouldn'tconnectto'https://huggingface.co'toloadthisfile,couldn'tfinditinthecachedfilesanditlookslikeroberta-baseisnotthepathtoadirectorycontainingafilenamedconfig.json.Checkoutyourinternetco
- GED-VIZ部署解决方案
yoyo_573
gitlab
项目https://github.com/bertelsmannstift/GED-VIZ最终结果如图:依赖要求:Dependencies一、Ruby1.9.3(MRI)withRubyGems.AlsoworkswithRuby2.1.(测试ruby2.4兼容性更好)二、MySQL5.1ornewer(测试过MYSQL5.7在迁移过程会有兼容性问题,建议MYSQL5.5)三、PhantomJSf
- 预训练目标:BERT 更适配 “理解类” 任务
在NLP任务中,更倾向于用BERT而非GPT做预训练,核心原因与两者的模型设计、任务适配性、资源成本有关,具体可从以下维度拆解:一、预训练目标:BERT更适配“理解类”任务BERT的双向预训练目标:通过掩码语言模型(MLM)和下一句预测(NSP),强制模型学习上下文的双向语义依赖(比如用“[MASK]是水果”的前后文猜“苹果”),天生适合文本理解、分类、问答等任务。GPT的单向预训练目标:基于自回
- Codeforce 884C - Bertown Subway
weixin_34281477
C.BertownSubwaytimelimitpertest1secondmemorylimitpertest256megabytesinputstandardinputoutputstandardoutputTheconstructionofsubwayinBertownisalmostfinished!ThePresidentofBerlandwillvisitthiscitysoontol
- Educational Codeforces Round 31 C.Bertown Subway(图论)
ganzibang
ACM-图论图论
题目链接:BertownSubway题意:简单地说,就是给一个n个地铁站的线路图,每个地铁站i有一趟地铁从i站出发,到达目的站pi,pi可以等于i且满足条件:对于每个i站,只存在一个j站使得pj=i。定义有序对pair(a,b)表示从a站到b站,现在给你一个机会在满足条件下可以改变不超过两个地铁站的pi,使得(a,b)的个数最多,问最多个数是多少?题解:题目先输入一个n,在输入pi,而且每个pi是
- codeforces 884C. Bertown Subway
C.BertownSubwaytimelimitpertest1secondmemorylimitpertest256megabytesinputstandardinputoutputstandardoutputTheconstructionofsubwayinBertownisalmostfinished!ThePresidentofBerlandwillvisitthiscitysoontol
- 十分钟带你入门Go语言(Golang)开发
gopyer
十分钟入门系列golang开发语言后端十分钟带你入门
概述Go语言是由Google的RobertGriesemer,RobPike及KenThompson开发的一种静态强类型、编译型语言。Go语言的设计目标是将静态语言的安全性和性能与动态语言的易用性相结合。Go语言在语言层面提供了对协程的支持,特别适合编写高并发的项目。随着使用Go语言开发的Docker、Kubernetes、Isito等容器化技术的兴起,Go语言越来越被广大开发者所青睐,一度从TI
- BERT模型微调全攻略:从数据准备到模型部署
AI智能探索者
bert人工智能深度学习ai
BERT模型微调全攻略:从数据准备到模型部署关键词:BERT模型、模型微调、数据准备、模型训练、模型部署摘要:本文全面介绍了BERT模型微调的整个流程,从数据准备开始,逐步讲解了数据预处理、模型训练以及最终的模型部署等关键步骤。通过通俗易懂的语言和详细的代码示例,帮助读者理解BERT模型微调的原理和操作方法,以便在实际项目中更好地应用BERT模型。背景介绍目的和范围我们的目的是让大家学会如何对BE
- AI大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够!
AI大模型-大飞
人工智能学习语言模型大模型大模型学习LLMAI大模型
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- 大模型学习路线:这会是你见过最全最新的大模型学习路线【2025最新】
大模型入门学习
学习人工智能产品经理大模型AI产品经理程序员大模型学习
大模型学习路线建议先从主流的Llama开始,然后选用中文的Qwen/Baichuan/ChatGLM,先快速上手体验prompt工程,然后再学习其架构,跑微调脚本如果要深入学习,建议再按以下步骤,从更基础的GPT和BERT学起,因为底层是相通的,而且实际落地到一个系统中,应该也是大模型结合小模型(大模型在做判别性的任务上,比BERT优势不是特别大)可以参考如下方案,按需学习。一、简述按个人偏好总结
- Python面向对象设计:SOLID原则详解
Yant224
python#面向对象编程python面向对象设计SOLID原则Python编程软件架构设计模式代码质量
一、SOLID原则概述1.1为什么需要设计原则?软件需求变化代码腐化维护成本增加开发效率下降系统重构SOLID原则是打破这一恶性循环的关键,由RobertC.Martin提出,包含五大核心原则:原则简称核心思想单一职责原则SRP一个类只有一个改变的理由开闭原则OCP对扩展开放,对修改关闭里氏替换原则LSP子类必须能替换父类接口隔离原则ISP多个专用接口优于单一通用接口依赖倒置原则DIP依赖抽象而非
- DeepSpeed 深度学习学习笔记:高效训练大型模型
主要参考官网文档,对于具体内容还需参考官方文档1.引言:为什么需要DeepSpeed?大型模型训练的挑战随着深度学习模型规模的爆炸式增长(从BERT的几亿参数到GPT-3的千亿参数,再到现在的万亿参数模型),传统的单GPU训练方式变得力不从心,即使是多GPU训练也面临巨大挑战:内存限制(MemoryWall):模型参数:模型的参数量巨大,例如一个1750亿参数的GPT-3模型,即使使用FP16精度
- BERT-NER-Pytorch 深度学习教程
富茉钰Ida
BERT-NER-Pytorch深度学习教程BERT-NER-PytorchChineseNER(NamedEntityRecognition)usingBERT(Softmax,CRF,Span)项目地址:https://gitcode.com/gh_mirrors/be/BERT-NER-Pytorch1.项目介绍BERT-NER-Pytorch是一个基于PyTorch实现的中文命名实体识别(
- 从代码学习深度学习 - 预训练BERT PyTorch版
飞雪白鹿€
#自然语言处理深度学习pytorch
文章目录前言一、数据准备:为BERT量身打造“教科书”1.1数据处理工具函数(`utils_for_data.py`)1.2加载数据二、模型构建:从零搭建BERT2.1模型工具函数(`utils_for_model.py`)2.2初始化模型和设备三、训练过程:让BERT开始学习3.1训练辅助工具(`utils_for_train.py`&`utils_for_huitu.py`)3.2损失计算与训
- 大模型基础全解:转行大模型开发所需的知识体系、能力要求及学习路径总结
程序员鑫港
学习java数据库
引言随着人工智能和大模型(如GPT-4、BERT等)技术的快速发展,越来越多的专业人士希望转行进入这一领域。大模型开发涉及复杂的技术体系和多样的应用场景,对从业者的知识和能力提出了较高要求。本文将详细解析转行大模型开发所需的知识体系、能力要求及学习路径,并结合实际数据和案例,提供深度指导。前排提示,文末有大模型AGI-CSDN独家资料包哦!一、基础知识和能力1.编程语言大模型开发离不开编程,以下是
- A基础语法.go
是紫焅呢
26字母学习:Go入门篇golang开发语言后端青少年编程visualstudiocode学习方法
前言:Go语言(又称Golang)以其简洁、高效的特性,在编程领域崭露头角。它由Google公司的RobertGriesemer、RobPike和KenThompson于2007年创建,旨在提高编程效率,简化并发编程,同时保持良好的性能。目录一、引言二、第一个Go程序三、变量与数据类型变量声明基本数据类型四、控制流语句条件语句循环语句五、函数函数定义函数调用匿名函数六、数组与切片数组切片七、映射(
- 【大模型开发】Hugging Face的Transformers库详解介绍与案例
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习transformerhuggingface大模型技术大模型开发deepseek机器学习深度学习
深入解析HuggingFaceTransformers及开源大模型微调实践HuggingFaceTransformers已成为自然语言处理(NLP)乃至多模态(跨语言、图像、音频等)应用中最为流行、功能最完备的开源框架之一。它将主流的预训练模型(如BERT、GPT、T5、VisionTransformer等)统一整合在同一套API下,并提供了丰富的工具支持快速训练、推理与部署。本篇文章将:介绍Hu
- Code Coverage
ROBIN-KING
codecoverage
市场上主要代码覆盖率工具:EmmaCoberturaJacocoClover(商用)这里简单介绍一下Jacoco覆盖率的概念:Jacoco包含了多种尺度的覆盖率计数器,包含:指令级(Instructions,C0coverage)分支(Branches,C1coverage)圈复杂度(CyclomaticComplexity)行(Lines)方法(Non-abstractMethods)类(Cla
- 【深度学习pytorch-88】BERT
超华东算法王
DL-pytorch深度学习pytorchbert
BERT(BidirectionalEncoderRepresentationsfromTransformers)简介BERT是一种基于Transformer架构的预训练语言表示模型,旨在通过大规模无监督学习来提升下游自然语言处理(NLP)任务的效果。BERT由GoogleAI的研究人员于2018年提出,它在多个NLP任务上设立了新的最先进的性能基准。BERT的核心思想BERT的核心思想是通过预训
- ROCm上来自Transformers的双向编码器表示(BERT)
109702008
#python人工智能#深度学习bert人工智能深度学习
14.8.来自Transformers的双向编码器表示(BERT)—动手学深度学习2.0.0documentation(d2l.ai)代码importtorchfromtorchimportnnfromd2limporttorchasd2l#@savedefget_tokens_and_segments(tokens_a,tokens_b=None):"""获取输入序列的词元及其片段索引"""to
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开