- “华为杯“第十四届中国研究生数学建模竞赛-A题:无人机在抢险救灾中的优化运用(续)
格图素书
大数据竞赛赛题解析数学建模华为无人机
目录5.问题二生命迹象探测5.1问题分析6.问题三灾区通信中继6.1问题分析6.2问题求解7.问题四无人机对地的数据传输7.1问题分析7.2问题求解8.模型的评价8.1模型的优点8.2模型的缺点9.参考文献10.附录本文篇幅较长,分为上下两篇,上篇详见无人机在抢险救灾中的优化运用5.问题二生命迹象探测5.1
- GGUF 文件格式全解析
Just_Paranoid
技术流ClipLLMGGUF量化DeepSeek
在机器学习领域,模型的存储和部署一直是关键环节。随着大语言模型(LLM)的广泛应用,如何高效地存储和加载这些复杂的模型成为一个亟待解决的问题。GGUF(GGMLUniversalFormat)作为一种新兴的二进制文件格式,旨在解决传统GGML及其衍生格式(如GGMF和GGJT)的局限性,为模型推理提供更高效、更灵活的解决方案。官方介绍:https://github.com/ggml-org/ggm
- 一个自用Typora魔改主题
小茂飞飞
工具css前端css3
本主题是我将Orange主题和Newsprint主题进行合并修改后的主题样式,后续还会继续优化,如果有建议可以在评论区指出。修改/添加Typora的步骤:文件-偏好设置-外观-主题-打开主题文件将以下内容保存至一个以.css结尾的文件内,然后重启Typora样式特点:页面、图片宽度最大化,使页面内容面积最大;代码主题设置为abbott。宽度最大化修改write属性的max-width#write{
- 安装CUDA以及GPU版本的pytorch
lskkkkkkkkkkkk
Pythonpytorch人工智能python
使用pytorch进行深度学习的时候,往往想用GPU进行运算来提高速度。于是搜索便知道了CUDA。下面给出一个自检的建议:检查cuda的版本是否适配自己的GPU。打开NVDIA控制面板,点击左下角“系统信息”,然后就可以看到NVDIAGPU的详细信息,其中就包含了CUDA的版本。在官网安装合适版本的cuda-toolkit。安装了cuda,但是命令行输入nvcc-V报错显示没有nvcc这时候可能没
- 如何将 DeepSeek 模型与 PyTorch结合使用
LCG元
大模型pytorch人工智能python
目录环境准备系统要求安装PyCharm下载DeepSeek模型使用Ollama下载模型验证模型下载本地部署DeepSeek模型使用Flask创建HTTP服务使用PyCharm调用本地服务进一步集成到开发流程封装函数自定义快捷键(可选)✍️相关问答DeepSeek模型与PyTorch结合使用的性能优化策略有哪些如何在PyCharm中设置自定义快捷键来快速调用DeepSeek服务DeepSeek模型的
- 医院HIS接入大模型:算力基础设施与训练能力的深度剖析与测算
Allen_LVyingbo
数智化医院2025健康医疗人工智能动态规划python
一、引言1.1研究背景与意义在数字化医疗快速发展的当下,医院信息系统(HospitalInformationSystem,HIS)作为医疗信息化的核心枢纽,承载着患者诊疗信息、医院运营管理等关键数据,对提升医疗服务质量、优化医院管理流程起着至关重要的作用。然而,传统HIS在面对日益增长的医疗数据量和复杂的临床需求时,逐渐显露出分析决策能力不足、智能化程度低等短板。随着人工智能技术的飞速发展,大模型
- OCP 认证专家零基础小白
leegong23111
oracle数据库
对于零基础的学习者而言,OCP专家认证是完全可以攻克的目标,而且其价值不可估量。从学习的角度来看,它为你提供了一套系统且全面的数据库知识体系。Oracle数据库作为行业内的领军者,其技术的深度和广度足以让你深入了解数据库的原理、架构、设计、管理与优化等各个关键环节。学习过程虽然充满挑战,但就像攀爬一座高峰,每一步的艰辛都伴随着知识积累的喜悦,当你逐渐掌握这些核心技能时,你会发现自己已经拥有了进入I
- Typora的Github主题美化
Huazzi_
效率工具githubTypora
[!note]Typora的Github主题进行一些自己喜欢的修改,主要包括:字体、代码块、表格样式美化前:美化后:一、字体更换之前便看上了「中文网字计划」的「朱雀仿宋」字体,于是一直想更换字体,奈何自己拖延症作祟,直到今天才开始行动。关于「中文网字计划」「中文网字计划」是一个致力于优化中文字体在互联网中应用的开源项目,通过WebFont技术为开发者提供便捷、免费的中文字体解决方案。其核心特点包括
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.20-2024.07.25
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理大语言模型VLM视觉语言模型论文推送
文章目录~1.LPGen:EnhancingHigh-FidelityLandscapePaintingGenerationthroughDiffusionModel2.HighEfficiencyImageCompressionforLargeVisual-LanguageModels3.Q-Ground:ImageQualityGroundingwithLargeMulti-modalityM
- 论文笔记:Enhancing Sentence Embeddings in Generative Language Models
UQI-LIUWJ
论文阅读语言模型人工智能
2024ICIC1INTRO对于文本嵌入,过去几年的相关研究主要集中在像BERT和RoBERTa这样的判别模型上。这些模型固有的语义空间各向异性,往往需要通过大量数据集进行微调,才能生成高质量的句子嵌入。——>需要较大的训练批次,这会消耗大量的计算资源一些前沿的工作将焦点转向了最近开发的生成模型,期望利用其先进的文本理解能力,直接对输入句子进行编码,而无需额外的反向传播由于句子表示和自回归语言建模
- ThinkJSON:通过强化学习让大型语言模型(LLM)严格遵守JSON模式
AI仙人掌
人工智能深度学习
标题:ThinkInsidetheJSON:ReinforcementStrategyforStrictLLMSchemaAdherence作者:BhavikAgarwal,IshanJoshi,ViktoriaRojkova机构:MasterControlAIResearch链接:arXiv:2502.14905v1本文提出了一种轻量级强化学习框架,通过合成数据、多奖励函数和GRPO优化,显著提
- [程序员]经典挖坑场景9,gcc代码优化与汇编指令的冲突
mzhan017
gccgdb/coredump汇编gcc
在之前总结过一个coredump:Coredump-X:movaps可能会导致段错误(SIGSEGV)https://mzhan017.blog.csdn.net/article/details/145477425原因是gcc做了优化,使用到了浮点类型的指令,这个指令要求是存储地址是16字节对齐,如果不对齐,就会coredump。产生coredump的地址是栈上的一个地址,之前一直没有想明白为什么
- 技术硬核:突出FP8、3倍速度、90%成本暴降等技术参数,强化可信度
guzhoumingyue
AIpython
DeepSeek近期开源项目详细分析1.FlashMLA:大模型推理效率革命技术特点:首个开源项目FlashMLA是针对英伟达Hopper架构GPU(如H800)优化的高效多头潜在注意力(MLA)解码内核,支持可变长度序列的动态处理,显著降低显存占用并提升推理速度。在H800上可实现每秒3000GB的数据吞吐和580万亿次浮点运算(TFLOPS),接近硬件性能极限。行业影响:通过压缩KV矩阵和优化
- (5-2-01)DeepSeek多模态大模型架构:Janus模型(1)
码农三叔
训练RAG多模态)架构人工智能transformerDeepseek大模型多模态
5.2Janus模型Janus多模态模型的设计核心在于视觉编码的解耦。传统多模态模型通常使用单一的视觉编码器来处理多模态理解和视觉生成任务,但由于这两种任务对视觉特征的需求存在显著差异,单一编码器往往难以同时满足两种任务的需求,从而导致性能瓶颈。为了解决这一问题,Janus模型提出了双路径视觉编码架构,将多模态理解和视觉生成任务的视觉编码过程完全分离,从而避免了任务间的冲突,并显著提升了模型在多模
- 区块链软件系统开发:从设计到实现的全面指南
电报号dapp119
区块链开发区块链去中心化智能合约
区块链技术自从比特币诞生以来,迅速成为了改变金融、供应链、医疗、政府等多个领域的核心技术。作为去中心化、不可篡改、透明可信的分布式账本技术,区块链不仅为加密货币提供了基础,还推动了许多创新应用的发展。然而,开发一个区块链软件系统并非易事。它涉及的技术难题、架构设计、以及安全和性能优化等方面的挑战都需要开发者深入理解和实践。本文将详细阐述区块链软件系统开发的过程,包括从需求分析到系统设计,再到开发与
- 读论文:Generation of 3D molecules in pockets via a language model (Lingo3Dmol)
LastWhisperw
语言模型人工智能自然语言处理
基于线性序列(例如SMILES)或图表示的的分子生成模型已经吸引了基于结构的药物设计领域的广泛关注,但这些模型在捕获3维空间交互时还不够强,也因此经常生成我们不希望产生的分子结构。为了解决这些问题,我们提出Lingo3DMol,一个基于口袋的3维分子生成方案,将语言模型和几何深度学习技术结合起来。为了帮助模型学习分子拓扑学和原子的空间位置,我们还提出一个新的分子表示方法,基于片段的简化分子xxxx
- 运维工程师的日常巡检内容
AustinCien
linux
服务器健康状态:检查服务器的硬件、操作系统和服务的运行状态,确保服务器正常工作并且没有异常。网络设备状态:检查网络交换机、路由器、防火墙等网络设备的连通性和运行状态,确保网络设备正常工作。存储设备空间:检查存储设备(如磁盘阵列、NAS等)的可用空间和使用率,及时处理存储空间不足的情况。数据库状态:检查数据库服务器的运行状态、连接数和查询性能,并进行必要的优化和维护。应用程序状态:检查应用程序服务器
- Elasticsearch性能优化实战指南_index
2401_87378872
elasticsearch性能优化jenkins
curl-XPUT"localhost:9200/twitter"-H'Content-Type:application/json'-d'{"settings":{"index":{"sort.field":"date","sort.order":"desc"}},"mappings":{"properties":{"date":{"type":"date"}}}}目的:indexsorting是
- Simulink开发项1000例实战专栏--实例117:使用MATLAB/Simulink平台,设计并实现一个完整的电动汽车动力总成系统模型
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏unity游戏引擎simulink
目录项目文档:基于Simulink的电动汽车动力总成系统仿真与优化1.背景介绍1.1项目背景1.2系统描述1.3应用场景2.系统架构设计2.1系统框图3.Simulink仿真模型步骤3.1创建Simulink模型3.2添加模块3.2.1电池模块3.2.2电机控制器模块3.2.3驱动电机模块3.2.4变速器模块3.2.5整车控制器模块3.3连接模块3.4设置仿真参数4.示例代码片段5.结束语6.优化
- DeepSeek-V3:最强开源MoE模型的技术解析与使用指南
认识祂
deepseek开源deepseek
目录引言模型概览架构创新:负载均衡策略与训练目标预训练:追求极致的训练效率后训练:从DeepSeek-R1进行知识蒸馏模型下载评估结果基础模型标准基准测试上下文窗口聊天模型标准基准测试(大于67B的模型)开放式生成评估如何使用在线聊天与API平台本地运行指南模型权重转换推理示例使用DeepSeek-InferDemo使用SGLang使用LMDeploy许可证引用联系我们1.引言我们隆重推出Deep
- 西工大SSD7课程:固态硬盘技术习题解答大全
金尼玛哈
本文还有配套的精品资源,点击获取简介:SSD7是关于固态硬盘技术的高级课程,覆盖了固态存储的基础理论、工作原理、设计与优化等方面。本资源集合了西安工业大学SSD7课程的所有习题解答,内容全面、格式规范,对于希望深入了解固态硬盘技术的学生和从业者非常有帮助。解答内容涵盖固态硬盘基础、NAND闪存类型、SSD控制器功能、读写操作、缓存与接口技术、性能指标、维护与优化等关键知识点,旨在帮助学习者掌握固态
- Ollama微调
软件不硬
LLMtoolAIGC
Ollama是一款开源工具,其目标是简化大语言模型在本地环境的部署和使用。它支持多种流行的开源大语言模型,如Llama2、Qwen2.5等。在上一篇文章中我们部署Ollama,并使用简单命令管理Ollama。接下来我们学习Ollama的高级应用。通过Ollama的ModeFile文件进行微调。通过ModelFile微调1、创建名为Modelfile的空白文件。2、在空白文件内写配置信息。FROMq
- AI岗位面试指南:高频文档问题解析与应答策略
阿三0812
ai人工智能面试
一、必问文档类问题与应答模板1.简历深挖类典型问题:"请详细解释简历中提到的「基于Transformer的文本生成优化项目」,你如何量化性能提升?"应答框架:背景与目标:"项目源于客户需要将文本生成延迟从2秒压缩至800ms以内,同时保证BLEU分数不低于0.82"技术创新点:"采用知识蒸馏+动态量化方案,设计分层注意力裁剪策略"量化成果:"推理速度提升2.7倍(2150ms→780ms),内存占
- 点云配准技术的演进与前沿探索:从传统算法到深度学习融合(1)
点云SLAM
点云数据处理技术算法深度学习点云数据处理点云配准刚体变换
1、点云配准的基础理论1.1点云数据的特性与获取点云数据是一种通过大量离散的三维坐标点来精确表示物体或场景表面几何形状和空间位置关系的数字化信息表达方式。在实际应用中,点云数据展现出诸多独特的特性。从表达形式来看,点云数据能够直观地呈现出物体或场景的三维结构,每个点都包含了其在空间中的X、Y、Z坐标信息,这使得点云数据可以精确地描述物体表面的形状和位置。例如,在对古建筑进行三维建模时,通过点云数据
- 浅析vue项目优化
欧阳呀
vue项目优化Vue2.0vuevue项目优化Vue2.0
vue用了半年多了,一路踩坑过来,也算是收获不少。不错呢,踩坑的文章很多,我就不写了,主要来写一写怎么去优化vue项目注意:适用于vue-cli初始化、webpack打包的单页应用。组件化组件化(也叫模块化)是前端的一个新的趋势,vue的核心之一也是组件化。项目里公共的地方都要组件化出来,少写很多代码(弹窗,表格,提示等等)。路由管理路由也是vue的重点,主要是涉及到参数传递,一般用这两种,par
- 手把手教你如何使用java开发人脸识别及人脸比对(附源码)
java人脸识别后端深度学习
痛点目前,常用的人脸识别算法大多基于Python开发,因为Python对深度学习框架的支持较好,且许多优秀的人脸识别算法都是在深度学习框架下实现的。然而,对于Java开发者来说,这种情况并不十分友好。传统上,Java开发的人脸识别算法主要依赖OpenCV,但与基于深度学习的算法相比,OpenCV的精度相对较低。此外,若Java开发者希望使用Python实现的算法,还需要安装Python环境,并且熟
- 当我的同事先用了通义灵码DeepSeek-R1模型……
云原生
当你发现同事的代码生成速度比你快,注释比你多,甚至还能智能问答时,别慌,他可能只是比你先用了通义灵码的DeepSeek-R1模型。近日,通义灵码上线DeepSeek-R1模型选择功能,为开发者们提供更懂中文,更擅复杂场景的AI编码助手,安装只需30秒,在IDEA插件市场搜索“通义”,认准排名第一的插件——最新2.1.0版本已支持多个模型,具备实时续写、自然语言生成、智能问答等多项能力。我们选择阿里
- 书籍-《在AWS上构建可扩展的深度学习Pipeline》
深度学习机器学习人工智能
书籍:BuildingScalableDeepLearningPipelinesonAWS:Develop,Train,andDeployDeepLearningModels作者:AbdelazizTestas出版:Apress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《在AWS上构建可扩展的深度学习Pipeline》01书籍介绍本书是您在亚马逊网络服务(AWS)上创建强大且端到端深度学
- 聊一聊提升测试用例覆盖率需要从哪几方面入手?
Feng.Lee
漫谈测试测试用例服务器运维
目录一、需求覆盖:确保无遗漏二、代码覆盖:工具辅助优化三、路径覆盖:逻辑深度遍历四、边界值覆盖:防御性测试设计五、异常场景覆盖:模拟真实故障六、兼容性覆盖:全环境验证七、性能覆盖:压力与稳定性八、历史缺陷覆盖:经验驱动九、测试数据覆盖:多样性输入十、自动化覆盖:高效执行十一、评审与优化:持续改进十二、工具与技术创新十三、风险驱动测试:聚焦关键点十四、持续追踪与反馈提升测试用例的覆盖率,可以从测试用
- DeepSeek + Higress AI 网关/Spring AI Alibaba 案例征集
云原生
诚挚地感谢每一位持续关注并使用Higress和SpringAIAlibaba的朋友。我们会持续投入,力图把Higress变得更好,把Higress和SpringAIAlibaba社区和生态变得更加繁荣。关于Higress:Higress除了作为云原生网关支持Web应用的部署,也支持作为AI网关支持大模型应用的部署。我们在下方文章中展现了AI网关的需求和场景,以及HigressAI网关的能力。《回归
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>