- AI驱动的个人工作革命:基于DeepSeek构建全场景智能工作助理(含源代码+多应用场景)
AI_DL_CODE
DeepSeek深度应用人工智能DeepSeek个人智能助理LangChain任务自动化知识管理大模型应用
摘要:本文详细阐述基于DeepSeek大模型构建个人工作助理的完整技术方案,通过LangChain实现任务分解、知识检索与工具调用的智能协同。方案融合向量数据库、多模态交互与个性化学习算法,构建涵盖邮件处理、会议管理、文档生成等15大核心工作场景的自动化系统。文中提供可运行代码、完整部署指南及效能测试数据,实现邮件处理效率提升13倍、会议纪要生成时间缩短100%、任务安排错误率降低83%的显著优化
- 2025 Next.js项目提前编译并在服务器
风吹落叶花飘荡
前端javascript服务器开发语言
要让一个Next.js项目提前编译并在服务器上运行,可以按照以下步骤操作:1.本地构建项目首先在开发环境中完成构建:#安装依赖pnpminstall#生产环境构建(生成优化版本)npmrunbuild这会生成:.next/目录(包含编译后的应用)public/目录(静态资源)node_modules/(生产依赖)2.准备部署文件需要上传到服务器的文件:.next/public/package.js
- 异物检测的计算机视觉算法技术路线
思绪漂移
计算机视觉算法人工智能
异物检测的计算机视觉算法技术路线在现代智能监测系统中,异物检测有着其必要性和运维重要性,通过计算机视觉算法,可以实时识别各种异常物体,为设备安全运行提供有力保障。本文将介绍异物检测的主要技术路线。一、分类识别适应场景分类识别技术主要适用于已知目标类别的异物检测场景。在运维环境中,这类场景包括:固定区域内的障碍物监测(如轨道区域的石块、工具、动物等)关键部件的异物附着检测(如固定装置上的杂物)安全通
- 构建你的AI应用开发平台:如何在Ubuntu上使用Docker部署Dify
kaixin_啊啊
商业合作cpolar人工智能ubuntudocker
文章目录前言1.Docker部署Dify2.本地访问Dify3.Ubuntu安装Cpolar4.配置公网地址5.远程访问6.固定Cpolar公网地址7.固定地址访问前言本文主要介绍如何在LinuxUbuntu系统使用Docker快速部署大语言模型应用开发平台Dify,并结合cpolar内网穿透工具实现公网环境远程访问本地Dify服务!Dify是一款开源的大语言模型(LLM)应用开发平台。它融合了后
- 隐马尔可夫模型(HMM):观测背后的状态解码艺术
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法HMM马尔科夫概率论
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心概念:双重随机过程隐马尔可夫模型(HiddenMarkovModel,HMM)是一种通过可观测序列推断隐含状态序列的概率图模型,包含两个核心随机过程:隐含状态链:不可观测的马尔可夫过程${q_t}$P(qt∣qt−1,qt−2,…,q1)=P(
- 【目标检测】Yolov7 的 ELAN 和 E-ELAN 模块演进(涉及到分组卷积,cardinality,梯度路径)
Jiangnan_Cai
深度学习目标检测YOLO人工智能
感觉从YOLOv6开始,YOLOv6系列感觉优化点都着重于推理速度上面,YOLOv6的RepBlock重参数化,给我的感觉就是算子融合进行加速。而YOLOv7,为了在各种架构的边缘设备上获得极致的推理速度。YOLOv7的工作:新的bagoffreebies(有效的训练技巧,不会增加推理的计算量)有规划的重参数化模型(不同边缘设备架构,不同的重参数化方法)新的动态标签分配方法为了更好的理解YOLOv
- threejs的transformControls拖拽结束的异常
transformControls拖拽结束以后会以结束点的射线拾取重新选中新的模型,这里发现是监听事件的问题//创建TransformControlsconsttransformControls=newTransformControls(camera,renderer.domElement);consttransformControlsHelper=transformControls.getHel
- 量化价值投资中的深度学习技术:TensorFlow实战
量化价值投资中的深度学习技术:TensorFlow实战关键词:量化价值投资,深度学习,TensorFlow,股票预测,因子模型,LSTM神经网络,量化策略摘要:本文将带你走进"量化价值投资"与"深度学习"的交叉地带,用小学生都能听懂的语言解释复杂概念,再通过手把手的TensorFlow实战案例,教你如何用AI技术挖掘股票市场中的价值宝藏。我们会从传统价值投资的痛点出发,揭示深度学习如何像"超级分析
- 小程序领域设计中的用户体验优化
小程序开发2020
小程序uxai
小程序领域设计中的用户体验优化:从"用得上"到"用得爽"的进阶指南关键词:小程序设计、用户体验优化、交互流畅性、性能调优、用户行为分析摘要:本文以"用户体验优化"为核心,结合小程序的特性与用户真实使用场景,系统讲解从性能加速到交互设计的全链路优化方法。通过生活案例类比、技术原理拆解与实战代码演示,帮助开发者/设计师理解"用户体验"的底层逻辑,掌握可落地的优化技巧,最终实现小程序从"能用"到"好用"
- 电线杆拉线智能警示装置的技术实现路径
李子圆圆
人工智能
目录前言一、光源选择与警示效率优化二、光导技术的场景适配性设计三、智能控制与低功耗技术方案四、安全与耐用性保障前言电线杆斜拉固定线作为保障输电线路稳定性的关键结构,其夜间可视性不足一直是安全防护的痛点。TLKS-PLSA-VII电线杆拉线智能警示装置通过激光与光导技术的创新融合,为这一问题提供了技术解决方案。一、光源选择与警示效率优化夜间警示的核心在于信号的精准传递,该装置选用660nm波段红色激
- Web 前端性能优化:从代码到加载速度的全面剖析
码力无边-OEC
前端性能优化web
Web前端性能优化:从代码到加载速度的全面剖析当用户访问你的网站时,如果页面加载时间超过3秒,跳出率会飙升至40%以上。更糟糕的是,移动端用户的耐心只有2秒。这意味着性能优化不仅仅是技术问题,更直接关系到业务成果。经过多年的前端开发实践,我发现很多开发者在性能优化时存在一个误区:过分关注工具和框架的选择,却忽略了最基础但最关键的优化策略。今天我们就来深入剖析前端性能优化的核心要点。性能优化的核心指
- Rust BSS段原理与实践解析
萧曵 丶
Rustrust开发语言后端内存模型
在Rust中,BSS段(BlockStartedbySymbol)是程序内存布局的关键部分,专门用于存储未初始化或零初始化的全局/静态变量。以下是从原理到实践的深入解析:一、BSS的核心特性零初始化BSS段中的所有变量在程序加载时自动初始化为0(或对应类型的零值:0、null、false等)。staticmutCOUNTER:usize=0;//实际存储在BSS段磁盘空间优化BSS段在可执行文件中
- 一个实例用全创建型模式-优化(冗余消除)
科学的发展-只不过是读大自然写的代码
#c++ubuntu开发java算法前端
1.关联链接上一篇:一个实例用全创建型模式-CSDN博客目录:《一个实例讲完23种设计模式》2.内容当前:单件+抽象工厂+创建者+工厂方法+优化需求:坦克大战创建两种坦克坦克类型射程速度b7070米时/70公里b5050米时/50公里设计说明1.抽象工厂承担了创建部件的任务2.创建者承担了将部件组装的任务3.工厂方法类相当于创建者模式的导演,但是他是并未给用户提供选择创建者的接口。而是通过自己的多
- MBSE 深度解析,基于模型的系统工程
北城笑笑
软件工程硬件工程
目录前言一、基础概述1.1中文全称与基本定义1.2MBSE的起源与背景1.2.1提出的背景与动因1.2.2MBSE的思想萌芽1.3MBSE与传统工程的区别二、发展历程2.1MBSE的演进阶段2.1.1探索期(2000年以前)2.1.1定义期(2000–2010年)2.1.1应用期(2010–2020年)2.1.1智能融合期(2020年至今)2.2主流建模语言与标准2.2主流建模语言与标准2.2.1
- 【人工智能】Spring AI Alibaba,一个面向 Java 开发者的开源框架,它旨在简化将人工智能(AI)功能集成到应用程序中的过程。
本本本添哥
A-AIGC人工智能大模型人工智能javaspring
一、SpringAIAlibaba介绍SpringAIAlibaba是一个面向Java开发者的开源框架,它旨在简化将人工智能(AI)功能集成到应用程序中的过程。该项目基于SpringAI构建,并且是阿里云通义系列模型及服务在JavaAI应用开发领域的最佳实践。SpringAIAlibaba的目标是为开发者提供一套高层次的AIAPI抽象以及与云原生基础设施的深度集成方案,从而帮助他们快速构建智能应用
- 模型融合与人机协同:构建人机共生的智能未来
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在科技日新月异的今天,人工智能(AI)已经成为了我们生活中不可或缺的一部分。从智能手机,到自动驾驶汽车,再到医疗诊断,AI的应用已经渗透到了我们生活的方方面面。然而,尽管AI的发展已经取得了显著的成就,但是我们仍然面临着一个重大的挑战:如何让AI系统更好地理解和适应人类的需求,以实现人机共生的智能未来。为了解决这个问题,越来越多的研究者开始探索模型融合和人机协同的方法。2.核心概念与联
- vLLM 优化与调优:提升模型性能的关键策略
强哥之神
人工智能深度学习计算机视觉deepseek智能体vllm
在当今人工智能领域,大语言模型(LLM)的应用日益广泛,而优化和调优这些模型的性能成为了至关重要的任务。vLLM作为一种高效的推理引擎,提供了多种策略来提升模型的性能。本文将深入探讨vLLMV1的优化与调优策略,帮助读者更好地理解和应用这些技术。抢占式调度(Preemption)由于Transformer架构的自回归特性,有时键值缓存(KVcache)空间不足以处理所有批量请求。在这种情况下,vL
- 让你的 AI 更聪明,这 7 个开源 MCP 项目不要错过
霍格沃兹测试开发学社
人工智能人工智能测试用例开发语言selenium驱动开发开源python
你还在用AI只是写写文档、改改代码?那你真的小看它了。现在,通过一套叫MCP(ModelControlPlane)的系统,AI不再只是“语言模型”,而是能直接操作网页、调用工具、自动化执行复杂任务的“智能助手”!今天整理了7个超实用的开源MCP项目,让你的AI立刻“开挂”。01|PagePublisherMCP:HTML页面一键上线还在发愁怎么把AI生成的HTML页部署上线?PagePublish
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- 从零构建智能ai语音助手:ESP32s3+Python+大语言模型实战指南
从零构建智能ai语音助手:ESP32s3+Python+大语言模型实战指南一、项目概述大家好!今天给大家带来一个干货满满的实战项目——基于ESP32S3硬件和Python后端的智能语音助手系统。这个项目将物联网技术与AI技术完美结合,打造一个可以实时对话、意图识别的智能语音交互系统。相比传统的离线语音系统只能识别固定命令词,我们这套系统可以:实现自然语言理解,支持多种表达方式无需预设固定命令词,更
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- nRF52832 低功耗设计与优化
mftang
zephyr架构蓝牙应用笔记NordicMCU系列笔记ZephyrRTOSzephyr架构蓝牙应用笔记
目录概述1技术背景2优化策略2.1系统级电源管理2.2时钟系统优化2.3GPIO配置优化3蓝牙协议栈优化3.1连接参数优化3.2广播优化4电源管理实践4.1功耗状态转换图4.2典型功耗分布5低功耗设计最佳实践5.1事件驱动架构5.2定时任务管理5.3数据批处理6高级优化技术6.1电压调节优化6.2RAM保持策略6.3动态功耗分析7功耗测量与验证8常见问题解决8.1功耗高于预期8.2唤醒延迟过长8.
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- 心理健康语音分析AI模型:开启心理评估新时代
AI大模型应用实战
人工智能语音识别ai
心理健康语音分析AI模型:开启心理评估新时代关键词:心理健康评估、语音信号处理、情感计算、AI模型、多模态融合摘要:传统心理评估依赖量表问卷和人工观察,存在主观性强、效率低、难以实时监测等局限。本文将带您走进“心理健康语音分析AI模型”的世界,从基础概念到核心技术,从算法原理到实战案例,揭秘AI如何通过“听声音”读懂心理状态,开启心理评估的智能化新时代。背景介绍目的和范围心理健康问题已成为全球公共
- mac安装docker
段帅星
PC使用问题macosdocker
1、下载docker-desktophttps://www.docker.com/products/docker-desktop/2、安装,双击安装3、优化docker配置默认配置cat~/Library/Group\Containers/group.com.docker/settings-store.json{"AutoStart":false,"DockerAppLaunchPath":"/A
- 【AI大模型】PyTorch Lightning 简化工具
我爱一条柴ya
学习AI记录人工智能pytorchpythonaiAI编程
PyTorchLightning是一个轻量级的PyTorch封装库,它通过抽象训练循环的工程细节,让研究人员可以专注于模型设计和实验。以下是PyTorchLightning的核心概念和实战指南。核心优势基础使用:三步搭建训练流程1.定义LightningModuleimporttorchimporttorch.nnasnnimportpytorch_lightningasplfromtorchme
- 【AI大模型】Transformer架构位置编码
我爱一条柴ya
学习AI记录人工智能神经网络aiAI编程
Transformer架构中的位置编码(PositionalEncoding)是其核心设计之一,用于解决一个关键问题:Self-Attention机制本身对输入元素的顺序是“无感知”的(permutationinvariant)。问题:为什么需要位置编码?Self-Attention的本质缺陷:Self-Attention通过计算所有元素对之间的关联来工作。然而,它只关心元素是什么(x_i的内容)
- 【AI大模型】深入解析预训练:大模型时代的核心引擎
我爱一条柴ya
学习AI记录深度学习人工智能aipythonAI编程算法
预训练已成为现代人工智能,尤其是自然语言处理和计算机视觉领域的基石技术。它彻底改变了模型开发范式,催生了BERT、GPT等革命性模型。本文将系统阐述预训练的核心概念、原理、方法、应用及挑战。一、预训练的本质:为何需要它?核心问题:数据标注的瓶颈监督学习依赖海量高质量标注数据,获取成本极高(时间、金钱、专业知识)。对于复杂任务(如理解语义、生成文本),标注难度呈指数级上升。标注数据稀缺导致模型泛化能
- MySQL存储结构深度解析:Buffer Pool与Page管理
hdzw20
mysql复习mysql数据库
MySQL存储结构解析:BufferPool与Page管理在MySQL的InnoDB存储引擎中,BufferPool是其核心组件之一,它极大地提升了数据库的性能。理解BufferPool的内部结构和工作机制,对于优化MySQL数据库至关重要。本文将讨论BufferPool的结构、三大链表、改进型LRU算法以及ChangeBuffer机制。1.BufferPool结构:控制块与缓存页BufferPo
- 多模态大语言模型arxiv论文略读(151)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文阅读论文笔记
ANovelMLLM-basedApproachforAutonomousDrivinginDifferentWeatherConditions➡️论文标题:ANovelMLLM-basedApproachforAutonomousDrivinginDifferentWeatherConditions➡️论文作者:SondaFourati,WaelJaafar,NouraBaccar➡️研究机构:
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>