为了判断每一个为’1’的数是否与别的‘1’相连,最终计算整个矩阵中的岛屿个数,我们可以考虑使用并查集来记录集合之间的相交关系。在并查集中,我们使用parent数组记录该节点的父节点,使用父节点来区分每一棵树。为了优化并查集的操作,我们将每一个节点都与父节点相连,并且始终将较矮的树连到较高的树上。我们使用count记录矩阵中的孤立岛屿个数,首先我们遍历矩阵,将每一个为‘1’的点对应的parent记为自己的序号。而后我们继续遍历矩阵中的每一个节点,为了避免遍历过的节点对之后的节点判断产生影响,我们在遍历过节点之后将其赋为‘0’。同时我们观察该节点上下左右的四个节点,若该节点存在且为‘1’,说明两个节点相连,应当加到同一个集合中,我们将较矮的树添加到较高的树中,并更新parent的值和count的值。最终遍历完所有节点之后,剩余的count值即为矩阵中不同的集合个数,即岛屿个数。
class Solution {
public:
int find(int x, vector<int> &parent) {
return x == parent[x] ? x : (parent[x] = find(parent[x], parent));
}
void to_union(int x1, int x2, vector<int> &parent, vector<int> &rank, int &count) {
int f1 = find(x1, parent);
int f2 = find(x2, parent);
if (f1 != f2) {
if (rank[f1] > rank[f2]) {
parent[f2] = f1;
} else {
parent[f1] = f2;
if (rank[f1] == rank[f2])
++rank[f2];
}
--count;
}
}
int numIslands(vector<vector<char>> &grid) {
vector<int> parent;
vector<int> rank;
int count = 0;
int m = grid.size();
int n = grid[0].size();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
parent.push_back(i * n + j);
++count;
} else {
parent.push_back(-1);
}
rank.push_back(0);
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
grid[i][j] = '0';
if (i - 1 >= 0 && grid[i - 1][j] == '1') to_union(i * n + j, (i - 1) * n + j, parent, rank, count);
if (i + 1 < m && grid[i + 1][j] == '1') to_union(i * n + j, (i + 1) * n + j, parent, rank, count);
if (j - 1 >= 0 && grid[i][j - 1] == '1') to_union(i * n + j, i * n + j - 1, parent, rank, count);
if (j + 1 < n && grid[i][j + 1] == '1') to_union(i * n + j, i * n + j + 1, parent, rank, count);
}
}
}
return count;
}
};
我们遍历矩阵中的每一个节点并将其赋值为‘0’,之后遍历该节点上下左右的节点,若为‘1’则继续赋值为‘0’并遍历。最终统计矩阵中岛屿的个数。
class Solution {
private:
void dfs(vector<vector<char>>& grid, int r, int c) {
int nr = grid.size();
int nc = grid[0].size();
grid[r][c] = '0';
if (r - 1 >= 0 && grid[r-1][c] == '1') dfs(grid, r - 1, c);
if (r + 1 < nr && grid[r+1][c] == '1') dfs(grid, r + 1, c);
if (c - 1 >= 0 && grid[r][c-1] == '1') dfs(grid, r, c - 1);
if (c + 1 < nc && grid[r][c+1] == '1') dfs(grid, r, c + 1);
}
public:
int numIslands(vector<vector<char>>& grid) {
int nr = grid.size();
if (!nr) return 0;
int nc = grid[0].size();
int num_islands = 0;
for (int r = 0; r < nr; ++r) {
for (int c = 0; c < nc; ++c) {
if (grid[r][c] == '1') {
++num_islands;
dfs(grid, r, c);
}
}
}
return num_islands;
}
};
具体思路同上,区别在于遍历时采用广度优先。
class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int nr = grid.size();
if (!nr) return 0;
int nc = grid[0].size();
int num_islands = 0;
for (int r = 0; r < nr; ++r) {
for (int c = 0; c < nc; ++c) {
if (grid[r][c] == '1') {
++num_islands;
grid[r][c] = '0';
queue<pair<int, int>> neighbors;
neighbors.push({r, c});
while (!neighbors.empty()) {
auto rc = neighbors.front();
neighbors.pop();
int row = rc.first, col = rc.second;
if (row - 1 >= 0 && grid[row-1][col] == '1') {
neighbors.push({row-1, col});
grid[row-1][col] = '0';
}
if (row + 1 < nr && grid[row+1][col] == '1') {
neighbors.push({row+1, col});
grid[row+1][col] = '0';
}
if (col - 1 >= 0 && grid[row][col-1] == '1') {
neighbors.push({row, col-1});
grid[row][col-1] = '0';
}
if (col + 1 < nc && grid[row][col+1] == '1') {
neighbors.push({row, col+1});
grid[row][col+1] = '0';
}
}
}
}
}
return num_islands;
}
};